2022-08-31 13:32:03 +08:00

192 lines
6.8 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import copy
import os
import os.path as osp
import time
import torch
from mmengine import Runner
from mmengine.config import Config, DictAction
from mmengine.dist import get_rank, init_dist
from mmengine.logging import MMLogger
from mmengine.model.wrappers import MMDistributedDataParallel, is_model_wrapper
from mmengine.runner import load_checkpoint
from mmengine.utils import mkdir_or_exist
from mmselfsup.evaluation.functional import knn_classifier
from mmselfsup.models.utils import Extractor
from mmselfsup.registry import MODELS
from mmselfsup.utils import register_all_modules
def parse_args():
parser = argparse.ArgumentParser(description='KNN evaluation')
parser.add_argument('config', help='train config file path')
parser.add_argument('--checkpoint', default=None, help='checkpoint file')
parser.add_argument(
'--dataset-config',
default='configs/benchmarks/classification/knn_imagenet.py',
help='knn dataset config file path')
parser.add_argument(
'--work-dir', type=str, default=None, help='the dir to save results')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
# KNN settings
parser.add_argument(
'--num-knn',
default=[10, 20, 100, 200],
nargs='+',
type=int,
help='Number of NN to use. 20 usually works the best.')
parser.add_argument(
'--temperature',
default=0.07,
type=float,
help='Temperature used in the voting coefficient.')
parser.add_argument(
'--use-cuda',
default=True,
type=bool,
help='Store the features on GPU. Set to False if you encounter OOM')
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument('--seed', type=int, default=0, help='random seed')
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def main():
args = parse_args()
# register all modules in mmselfsup into the registries
register_all_modules()
# load config
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# set cudnn_benchmark
if cfg.env_cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
# work_dir is determined in this priority: CLI > segment in file > filename
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
# use config filename as default work_dir if cfg.work_dir is None
work_type = args.config.split('/')[1]
cfg.work_dir = osp.join('./work_dirs', work_type,
osp.splitext(osp.basename(args.config))[0])
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher)
# create work_dir
knn_work_dir = osp.join(cfg.work_dir, 'knn/')
mkdir_or_exist(osp.abspath(knn_work_dir))
# init the logger before other steps
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
log_file = osp.join(knn_work_dir, f'knn_{timestamp}.log')
logger = MMLogger.get_instance(
'mmselfsup',
logger_name='mmselfsup',
log_file=log_file,
log_level=cfg.log_level)
# build dataloader
dataset_cfg = Config.fromfile(args.dataset_config)
data_loader_train = Runner.build_dataloader(
dataloader=dataset_cfg.train_dataloader, seed=args.seed)
data_loader_val = Runner.build_dataloader(
dataloader=dataset_cfg.val_dataloader, seed=args.seed)
# build the model
model = MODELS.build(cfg.model)
model.init_weights()
# model is determined in this priority: init_cfg > checkpoint > random
if hasattr(cfg.model.backbone, 'init_cfg'):
if getattr(cfg.model.backbone.init_cfg, 'type', None) == 'Pretrained':
logger.info(
f'Use pretrained model: '
f'{cfg.model.backbone.init_cfg.checkpoint} to extract features'
)
elif args.checkpoint is not None:
logger.info(f'Use checkpoint: {args.checkpoint} to extract features')
load_checkpoint(model, args.checkpoint, map_location='cpu')
else:
logger.info('No pretrained or checkpoint is given, use random init.')
if torch.cuda.is_available():
model = model.cuda()
if distributed:
model = MMDistributedDataParallel(
module=model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False)
if is_model_wrapper(model):
model = model.module
# build extractor and extract features
extractor_train = Extractor(
extract_dataloader=data_loader_train,
seed=args.seed,
dist_mode=distributed,
pool_cfg=copy.deepcopy(dataset_cfg.pool_cfg))
extractor_val = Extractor(
extract_dataloader=data_loader_val,
seed=args.seed,
dist_mode=distributed,
pool_cfg=copy.deepcopy(dataset_cfg.pool_cfg))
train_feats = extractor_train(model)['feat5']
val_feats = extractor_val(model)['feat5']
train_feats = torch.from_numpy(train_feats)
val_feats = torch.from_numpy(val_feats)
train_labels = torch.LongTensor(data_loader_train.dataset.get_gt_labels())
val_labels = torch.LongTensor(data_loader_val.dataset.get_gt_labels())
logger.info('Features are extracted! Start k-NN classification...')
# run knn
rank = get_rank()
if rank == 0:
if args.use_cuda:
train_feats = train_feats.cuda()
val_feats = val_feats.cuda()
train_labels = train_labels.cuda()
val_labels = val_labels.cuda()
for k in args.num_knn:
top1, top5 = knn_classifier(train_feats, train_labels, val_feats,
val_labels, k, args.temperature)
logger.info(
f'{k}-NN classifier result: Top1: {top1}, Top5: {top5}')
if __name__ == '__main__':
main()