mirror of https://github.com/open-mmlab/mmyolo.git
39 lines
1.4 KiB
Python
39 lines
1.4 KiB
Python
|
_base_ = './rtmdet-r_l_syncbn_fast_2xb4-36e_dota-ms.py'
|
||
|
|
||
|
checkpoint = 'https://download.openmmlab.com/mmdetection/v3.0/rtmdet/cspnext_rsb_pretrain/cspnext-tiny_imagenet_600e.pth' # noqa
|
||
|
|
||
|
# ========================modified parameters======================
|
||
|
deepen_factor = 0.167
|
||
|
widen_factor = 0.375
|
||
|
|
||
|
# Batch size of a single GPU during training
|
||
|
train_batch_size_per_gpu = 8
|
||
|
|
||
|
# Submission dir for result submit
|
||
|
submission_dir = './work_dirs/{{fileBasenameNoExtension}}/submission'
|
||
|
|
||
|
# =======================Unmodified in most cases==================
|
||
|
model = dict(
|
||
|
backbone=dict(
|
||
|
deepen_factor=deepen_factor,
|
||
|
widen_factor=widen_factor,
|
||
|
init_cfg=dict(checkpoint=checkpoint)),
|
||
|
neck=dict(deepen_factor=deepen_factor, widen_factor=widen_factor),
|
||
|
bbox_head=dict(head_module=dict(widen_factor=widen_factor)))
|
||
|
|
||
|
train_dataloader = dict(batch_size=train_batch_size_per_gpu)
|
||
|
|
||
|
# Inference on test dataset and format the output results
|
||
|
# for submission. Note: the test set has no annotation.
|
||
|
# test_dataloader = dict(
|
||
|
# dataset=dict(
|
||
|
# data_root=_base_.data_root,
|
||
|
# ann_file='', # test set has no annotation
|
||
|
# data_prefix=dict(img_path=_base_.test_data_prefix),
|
||
|
# pipeline=_base_.test_pipeline))
|
||
|
# test_evaluator = dict(
|
||
|
# type='mmrotate.DOTAMetric',
|
||
|
# format_only=True,
|
||
|
# merge_patches=True,
|
||
|
# outfile_prefix=submission_dir)
|