mmyolo/tools/analysis_tools/browse_dataset.py

91 lines
3.0 KiB
Python
Raw Normal View History

2022-09-18 10:11:55 +08:00
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
import numpy as np
from mmengine.config import Config, DictAction
from mmengine.utils import ProgressBar
from mmdet.models.utils import mask2ndarray
from mmdet.structures.bbox import BaseBoxes
2022-09-18 10:11:55 +08:00
from mmyolo.registry import DATASETS, VISUALIZERS
from mmyolo.utils import register_all_modules
def parse_args():
parser = argparse.ArgumentParser(description='Browse a dataset')
parser.add_argument('config', help='train config file path')
parser.add_argument(
'--output-dir',
default=None,
type=str,
help='If there is no display interface, you can save it')
parser.add_argument('--not-show', default=False, action='store_true')
parser.add_argument(
'--show-interval',
type=float,
default=3,
help='the interval of show (s)')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
return args
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# register all modules in mmdet into the registries
register_all_modules()
dataset = DATASETS.build(cfg.train_dataloader.dataset)
visualizer = VISUALIZERS.build(cfg.visualizer)
visualizer.dataset_meta = dataset.metainfo
progress_bar = ProgressBar(len(dataset))
for item in dataset:
img = item['inputs'].permute(1, 2, 0).numpy()
data_samples = item['data_samples'].numpy()
gt_instances = data_samples.gt_instances
img_path = osp.basename(item['data_samples'].img_path)
out_file = osp.join(
args.output_dir,
osp.basename(img_path)) if args.output_dir is not None else None
img = img[..., [2, 1, 0]] # bgr to rgb
gt_bboxes = gt_instances.get('bboxes', None)
if gt_bboxes is not None and isinstance(gt_bboxes, BaseBoxes):
gt_instances.bboxes = gt_bboxes.tensor
gt_masks = gt_instances.get('masks', None)
if gt_masks is not None:
masks = mask2ndarray(gt_masks)
gt_instances.masks = masks.astype(np.bool)
data_samples.gt_instances = gt_instances
visualizer.add_datasample(
osp.basename(img_path),
img,
data_samples,
draw_pred=False,
show=not args.not_show,
wait_time=args.show_interval,
out_file=out_file)
progress_bar.update()
if __name__ == '__main__':
main()