2022-09-18 10:51:09 +08:00
|
|
|
|
# 实用工具
|
|
|
|
|
|
2022-09-21 15:45:26 +08:00
|
|
|
|
我们在 `tools/` 文件夹下提供很多实用工具。 除此之外,你也可以通过 MIM 来快速运行 OpenMMLab 的其他开源库。
|
|
|
|
|
|
|
|
|
|
以 MMDetection 为例,如果想利用 [print_config.py](https://github.com/open-mmlab/mmdetection/blob/3.x/tools/misc/print_config.py),你可以直接采用如下命令,而无需复制源码到 MMYOLO 库中。
|
2022-09-18 10:51:09 +08:00
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
mim run mmdet print_config [CONFIG]
|
|
|
|
|
```
|
|
|
|
|
|
2022-09-21 15:45:26 +08:00
|
|
|
|
**注意**:上述命令能够成功的前提是 MMDetection 库必须通过 MIM 来安装。
|
2022-09-18 10:51:09 +08:00
|
|
|
|
|
|
|
|
|
## 可视化
|
|
|
|
|
|
|
|
|
|
### 可视化 COCO 标签
|
|
|
|
|
|
2022-11-03 14:09:23 +08:00
|
|
|
|
脚本 `tools/analysis_tools/browse_coco_json.py` 能够使用可视化显示 COCO 标签在图片的情况。
|
2022-09-18 10:51:09 +08:00
|
|
|
|
|
|
|
|
|
```shell
|
2022-09-21 15:45:26 +08:00
|
|
|
|
python tools/analysis_tools/browse_coco_json.py ${DATA_ROOT} \
|
|
|
|
|
[--ann_file ${ANN_FILE}] \
|
|
|
|
|
[--img_dir ${IMG_DIR}] \
|
|
|
|
|
[--wait-time ${WAIT_TIME}] \
|
|
|
|
|
[--disp-all] [--category-names CATEGORY_NAMES [CATEGORY_NAMES ...]] \
|
|
|
|
|
[--shuffle]
|
2022-09-18 10:51:09 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
例子:
|
|
|
|
|
|
2022-09-21 15:45:26 +08:00
|
|
|
|
1. 查看 `COCO` 全部类别,同时展示 `bbox`、`mask` 等所有类型的标注:
|
2022-09-18 10:51:09 +08:00
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
python tools/analysis_tools/browse_coco_json.py './data/coco/' \
|
|
|
|
|
--ann_file 'annotations/instances_train2017.json' \
|
|
|
|
|
--img_dir 'train2017' \
|
|
|
|
|
--disp-all
|
|
|
|
|
```
|
|
|
|
|
|
2022-09-21 15:45:26 +08:00
|
|
|
|
2. 查看 `COCO` 全部类别,同时仅展示 `bbox` 类型的标注,并打乱显示:
|
2022-09-18 10:51:09 +08:00
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
python tools/analysis_tools/browse_coco_json.py './data/coco/' \
|
|
|
|
|
--ann_file 'annotations/instances_train2017.json' \
|
|
|
|
|
--img_dir 'train2017' \
|
|
|
|
|
--shuffle
|
|
|
|
|
```
|
|
|
|
|
|
2022-09-21 15:45:26 +08:00
|
|
|
|
3. 只查看 `bicycle` 和 `person` 类别,同时仅展示 `bbox` 类型的标注:
|
2022-09-18 10:51:09 +08:00
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
python tools/analysis_tools/browse_coco_json.py './data/coco/' \
|
|
|
|
|
--ann_file 'annotations/instances_train2017.json' \
|
|
|
|
|
--img_dir 'train2017' \
|
|
|
|
|
--category-names 'bicycle' 'person'
|
|
|
|
|
```
|
|
|
|
|
|
2022-09-21 15:45:26 +08:00
|
|
|
|
4. 查看 `COCO` 全部类别,同时展示 `bbox`、`mask` 等所有类型的标注,并打乱显示:
|
2022-09-18 10:51:09 +08:00
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
python tools/analysis_tools/browse_coco_json.py './data/coco/' \
|
|
|
|
|
--ann_file 'annotations/instances_train2017.json' \
|
|
|
|
|
--img_dir 'train2017' \
|
|
|
|
|
--disp-all \
|
|
|
|
|
--shuffle
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### 可视化数据集
|
|
|
|
|
|
|
|
|
|
脚本 `tools/analysis_tools/browse_dataset.py` 能够帮助用户去直接窗口可视化数据集的原始图片+展示标签的图片,或者保存可视化图片到指定文件夹内。
|
|
|
|
|
|
|
|
|
|
```shell
|
2022-09-21 15:45:26 +08:00
|
|
|
|
python tools/analysis_tools/browse_dataset.py ${CONFIG} \
|
|
|
|
|
[-h] \
|
|
|
|
|
[--output-dir ${OUTPUT_DIR}] \
|
|
|
|
|
[--not-show] \
|
|
|
|
|
[--show-interval ${SHOW_INTERVAL}]
|
2022-09-18 10:51:09 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
例子:
|
|
|
|
|
|
|
|
|
|
1. 使用 `config` 文件 `configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py` 可视化图片,图片直接弹出显示,同时保存到目录 `work-dir/browse_dataset`:
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
python tools/analysis_tools/browse_dataset.py 'configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py' \
|
|
|
|
|
--output-dir 'work-dir/browse_dataset'
|
|
|
|
|
```
|
|
|
|
|
|
2022-09-20 15:45:55 +08:00
|
|
|
|
2. 使用 `config` 文件 `configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py` 可视化图片,图片直接弹出显示,每张图片持续 `10` 秒,同时保存到目录 `work-dir/browse_dataset`:
|
2022-09-18 10:51:09 +08:00
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
python tools/analysis_tools/browse_dataset.py 'configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py' \
|
|
|
|
|
--output-dir 'work-dir/browse_dataset' \
|
|
|
|
|
--show-interval 10
|
|
|
|
|
```
|
|
|
|
|
|
2022-09-20 15:45:55 +08:00
|
|
|
|
3. 使用 `config` 文件 `configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py` 可视化图片,图片直接弹出显示,每张图片持续 `10` 秒,图片不进行保存:
|
2022-09-18 10:51:09 +08:00
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
python tools/analysis_tools/browse_dataset.py 'configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py' \
|
|
|
|
|
--show-interval 10
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
4. 使用 `config` 文件 `configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py` 可视化图片,图片不直接弹出显示,仅保存到目录 `work-dir/browse_dataset`:
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
python tools/analysis_tools/browse_dataset.py 'configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py' \
|
|
|
|
|
--output-dir 'work-dir/browse_dataset' \
|
|
|
|
|
--not-show
|
|
|
|
|
```
|
|
|
|
|
|
2022-11-03 14:09:23 +08:00
|
|
|
|
### 可视化数据集分
|
|
|
|
|
|
|
|
|
|
脚本 `tools/analysis_tools/dataset_analysis.py` 能够帮助用户得到四种功能的结果图,并将图片保存到当前运行目录下的 `dataset_analysis` 文件夹中。
|
|
|
|
|
关于该脚本的功能的说明:
|
|
|
|
|
通过 `main()` 的数据准备,得到每个子函数所需要的数据。
|
|
|
|
|
功能一:显示类别和 bbox 实例个数的分布图,通过子函数 `show_bbox_num` 生成。
|
|
|
|
|
|
|
|
|
|
<img src="https://user-images.githubusercontent.com/90811472/196891728-4c2f1ab3-01cb-445f-a6b8-39752387c40f.jpg"/>
|
|
|
|
|
|
|
|
|
|
功能二:显示类别和 bbox 实例宽、高的分布图,通过子函数 `show_bbox_wh` 生成。
|
|
|
|
|
|
|
|
|
|
<img src="https://user-images.githubusercontent.com/90811472/199019573-650b9652-eb14-4bc0-a5e8-650dfc578fc8.jpg"/>
|
|
|
|
|
|
|
|
|
|
功能三:显示类别和 bbox 实例宽/高比例的分布图,通过子函数 `show_bbox_wh_ratio` 生成。
|
|
|
|
|
|
|
|
|
|
<img src="https://user-images.githubusercontent.com/90811472/199019593-0f810a21-18d2-41ac-b4fa-baa8288bcb23.jpg"/>
|
|
|
|
|
|
|
|
|
|
功能四:基于面积规则下,显示类别和 bbox 实例面积的分布图,通过子函数 `show_bbox_area` 生成。
|
|
|
|
|
|
|
|
|
|
<img src="https://user-images.githubusercontent.com/90811472/199022991-5388db47-d0f3-4201-9eee-13c5fab6bca9.jpg"/>
|
|
|
|
|
|
|
|
|
|
打印列表显示,通过脚本中子函数 `show_class_list` 和 `show_data_lis` 生成。
|
|
|
|
|
|
|
|
|
|
<img src="https://user-images.githubusercontent.com/90811472/199090989-15109bbf-f035-477d-8566-e2a28de0935d.jpg"/>
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
python tools/analysis_tools/dataset_analysis.py ${CONFIG} \
|
|
|
|
|
[-h] \
|
|
|
|
|
[--val-dataset ${TYPE}] \
|
|
|
|
|
[--class-name ${CLASS_NAME}] \
|
|
|
|
|
[--area-rule ${AREA_RULE}] \
|
|
|
|
|
[--func ${FUNC}] \
|
|
|
|
|
[--output-dir ${OUTPUT_DIR}]
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
例子:
|
|
|
|
|
|
|
|
|
|
1.使用 `config` 文件 `configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py` 分析数据集,其中默认设置:数据加载类型为 `train_dataset` ,面积规则设置为 `[0,32,96,1e5]` ,生成包含所有类的结果图并将图片保存到当前运行目录下 `./dataset_analysis` 文件夹中:
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
python tools/analysis_tools/dataset_analysis.py configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
2.使用 `config` 文件 `configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py` 分析数据集,通过 `--val-dataset` 设置将数据加载类型由默认的 `train_dataset` 改为 `val_dataset`:
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
python tools/analysis_tools/dataset_analysis.py configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py \
|
|
|
|
|
--val-dataset
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
3.使用 `config` 文件 `configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py` 分析数据集,通过 `--class-name` 设置将生成所有类改为特定类显示,以显示 `person` 为例:
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
python tools/analysis_tools/dataset_analysis.py configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py \
|
|
|
|
|
--class-name person
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
4.使用 `config` 文件 `configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py` 分析数据集,通过 `--area-rule` 重新定义面积规则,以 `30 70 125` 为例,面积规则变为 `[0,30,70,125,1e5]`:
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
python tools/analysis_tools/dataset_analysis.py configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py \
|
|
|
|
|
--area-rule 30 70 125
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
5.使用 `config` 文件 `configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py` 分析数据集,通过 `--func` 设置,将显示四个功能效果图改为只显示 `功能一` 为例:
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
python tools/analysis_tools/dataset_analysis.py configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py \
|
|
|
|
|
--func show_bbox_num
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
6.使用 `config` 文件 `configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py` 分析数据集,通过 `--output-dir` 设置修改图片保存地址,以 `work_ir/dataset_analysis` 地址为例:
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
python tools/analysis_tools/dataset_analysis.py configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py \
|
|
|
|
|
--output-dir work_dir/dataset_analysis
|
|
|
|
|
```
|
|
|
|
|
|
2022-09-18 10:51:09 +08:00
|
|
|
|
## 数据集转换
|
|
|
|
|
|
2022-10-21 14:49:50 +08:00
|
|
|
|
文件夹 `tools/data_converters/` 目前包含 `ballon2coco.py` 和 `yolo2coco.py` 两个数据集转换工具。
|
|
|
|
|
|
|
|
|
|
- `ballon2coco.py` 将 `balloon` 数据集(该小型数据集仅作为入门使用)转换成 COCO 的格式。
|
2022-09-18 10:51:09 +08:00
|
|
|
|
|
2022-09-19 15:23:38 +08:00
|
|
|
|
关于该脚本的详细说明,请看 [YOLOv5 从入门到部署全流程](./yolov5_tutorial.md) 中 `数据集准备` 小节。
|
2022-09-18 10:51:09 +08:00
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
python tools/dataset_converters/balloon2coco.py
|
|
|
|
|
```
|
|
|
|
|
|
2022-10-21 14:49:50 +08:00
|
|
|
|
- `yolo2coco.py` 将 `yolo-style` **.txt** 格式的数据集转换成 COCO 的格式,请按如下方式使用:
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
python tools/dataset_converters/yolo2coco.py /path/to/the/root/dir/of/your_dataset
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
使用说明:
|
|
|
|
|
|
|
|
|
|
1. `image_dir` 是需要你传入的待转换的 yolo 格式数据集的根目录,内应包含 `images` 、 `labels` 和 `classes.txt` 文件, `classes.txt` 是当前 dataset 对应的类的声明,一行一个类别。
|
|
|
|
|
`image_dir` 结构如下例所示:
|
|
|
|
|
|
|
|
|
|
```bash
|
|
|
|
|
.
|
|
|
|
|
└── $ROOT_PATH
|
|
|
|
|
├── classes.txt
|
|
|
|
|
├── labels
|
|
|
|
|
│ ├── a.txt
|
|
|
|
|
│ ├── b.txt
|
|
|
|
|
│ └── ...
|
|
|
|
|
├── images
|
|
|
|
|
│ ├── a.jpg
|
|
|
|
|
│ ├── b.png
|
|
|
|
|
│ └── ...
|
|
|
|
|
└── ...
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
2. 脚本会检测 `image_dir` 下是否已有的 `train.txt` 、 `val.txt` 和 `test.txt` 。若检测到文件,则会按照类别进行整理, 否则默认不需要分类。故请确保对应的 `train.txt` 、 `val.txt` 和 `test.txt` 要在 `image_dir` 内。文件内的图片路径必须是**绝对路径**。
|
|
|
|
|
3. 脚本会默认在 `image_dir` 目录下创建 `annotations` 文件夹并将转换结果存在这里。如果在 `image_dir` 下没找到分类文件,输出文件即为一个 `result.json`,反之则会生成需要的 `train.json` 、 `val.json`、 `test.json`,脚本完成后 `annotations` 结构可如下例所示:
|
|
|
|
|
|
|
|
|
|
```bash
|
|
|
|
|
.
|
|
|
|
|
└── $ROOT_PATH
|
|
|
|
|
├── annotations
|
|
|
|
|
│ ├── result.json
|
|
|
|
|
│ └── ...
|
|
|
|
|
├── classes.txt
|
|
|
|
|
├── labels
|
|
|
|
|
│ ├── a.txt
|
|
|
|
|
│ ├── b.txt
|
|
|
|
|
│ └── ...
|
|
|
|
|
├── images
|
|
|
|
|
│ ├── a.jpg
|
|
|
|
|
│ ├── b.png
|
|
|
|
|
│ └── ...
|
|
|
|
|
└── ...
|
|
|
|
|
```
|
|
|
|
|
|
2022-09-18 10:51:09 +08:00
|
|
|
|
## 数据集下载
|
|
|
|
|
|
|
|
|
|
脚本 `tools/misc/download_dataset.py` 支持下载数据集,例如 `COCO`、`VOC`、`LVIS` 和 `Balloon`.
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
python tools/misc/download_dataset.py --dataset-name coco2017
|
|
|
|
|
python tools/misc/download_dataset.py --dataset-name voc2007
|
|
|
|
|
python tools/misc/download_dataset.py --dataset-name lvis
|
|
|
|
|
python tools/misc/download_dataset.py --dataset-name balloon [--save-dir ${SAVE_DIR}] [--unzip]
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
## 模型转换
|
|
|
|
|
|
|
|
|
|
文件夹 `tools/analysis_tools/` 下的三个脚本能够帮助用户将对应YOLO官方的预训练模型中的键转换成 `MMYOLO` 格式,并使用 `MMYOLO` 对模型进行微调。
|
|
|
|
|
|
|
|
|
|
### YOLOv5
|
|
|
|
|
|
|
|
|
|
下面以转换 `yolov5s.pt` 为例:
|
|
|
|
|
|
2022-09-21 15:45:26 +08:00
|
|
|
|
1. 将 YOLOv5 官方代码克隆到本地(目前支持的最高版本为 `v6.1` ):
|
2022-09-18 10:51:09 +08:00
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
git clone -b v6.1 https://github.com/ultralytics/yolov5.git
|
|
|
|
|
cd yolov5
|
|
|
|
|
```
|
|
|
|
|
|
2022-09-21 15:45:26 +08:00
|
|
|
|
2. 下载官方权重:
|
2022-09-18 10:51:09 +08:00
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
wget https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s.pt
|
|
|
|
|
```
|
|
|
|
|
|
2022-09-21 15:45:26 +08:00
|
|
|
|
3. 将 `tools/model_converters/yolov5_to_mmyolo.py` 文件复制到 YOLOv5 官方代码克隆的路径:
|
2022-09-18 10:51:09 +08:00
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
cp ${MMDET_YOLO_PATH}/tools/model_converters/yolov5_to_mmyolo.py yolov5_to_mmyolo.py
|
|
|
|
|
```
|
|
|
|
|
|
2022-09-21 15:45:26 +08:00
|
|
|
|
4. 执行转换:
|
2022-09-18 10:51:09 +08:00
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
python yolov5_to_mmyolo.py --src ${WEIGHT_FILE_PATH} --dst mmyolov5.pt
|
|
|
|
|
```
|
|
|
|
|
|
2022-09-20 15:45:55 +08:00
|
|
|
|
转换好的 `mmyolov5.pt` 即可以为 MMYOLO 所用。 YOLOv6 官方权重转化也是采用一样的使用方式。
|
2022-09-18 10:51:09 +08:00
|
|
|
|
|
|
|
|
|
### YOLOX
|
|
|
|
|
|
|
|
|
|
YOLOX 模型的转换不需要下载 YOLOX 官方代码,只需要下载权重即可。下面以转换 `yolox_s.pth` 为例:
|
|
|
|
|
|
|
|
|
|
1. 下载权重:
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
wget https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_s.pth
|
|
|
|
|
```
|
|
|
|
|
|
2022-09-21 15:45:26 +08:00
|
|
|
|
2. 执行转换:
|
2022-09-18 10:51:09 +08:00
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
python tools/model_converters/yolox_to_mmyolo.py --src yolox_s.pth --dst mmyolox.pt
|
|
|
|
|
```
|
|
|
|
|
|
2022-09-20 15:45:55 +08:00
|
|
|
|
转换好的 `mmyolox.pt` 即可以在 MMYOLO 中使用。
|
2022-10-26 18:23:47 +08:00
|
|
|
|
|
2022-10-31 19:12:36 +08:00
|
|
|
|
## 优化锚框尺寸
|
|
|
|
|
|
|
|
|
|
脚本 `tools/analysis_tools/optimize_anchors.py` 支持 yolo 系列中三种锚框生成方式,分别是 `k-means`、`differential_evolution`、`v5-k-means`.
|
|
|
|
|
|
|
|
|
|
### k-means
|
|
|
|
|
|
|
|
|
|
在 k-means 方法中,使用的是基于 IoU 表示距离的聚类方法,具体使用命令如下:
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
python tools/analysis_tools/optimize_anchors.py ${CONFIG} \
|
|
|
|
|
--algorithm k-means \
|
|
|
|
|
--input-shape ${INPUT_SHAPE [WIDTH HEIGHT]} \
|
|
|
|
|
--output-dir ${OUTPUT_DIR}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### differential_evolution
|
|
|
|
|
|
|
|
|
|
在 differential_evolution 方法中,使用的是基于差分进化算法(简称 DE 算法)的聚类方式,其最小化目标函数为 `avg_iou_cost` ,具体使用命令如下:
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
python tools/analysis_tools/optimize_anchors.py ${CONFIG} \
|
|
|
|
|
--algorithm differential_evolution \
|
|
|
|
|
--input-shape ${INPUT_SHAPE [WIDTH HEIGHT]} \
|
|
|
|
|
--output-dir ${OUTPUT_DIR}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### v5-k-means
|
|
|
|
|
|
|
|
|
|
在 v5-k-means 方法中,使用的是 yolov5 中基于 shape-match 的聚类方式,具体使用命令如下:
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
python tools/analysis_tools/optimize_anchors.py ${CONFIG} \
|
|
|
|
|
--algorithm v5-k-means \
|
|
|
|
|
--input-shape ${INPUT_SHAPE [WIDTH HEIGHT]} \
|
|
|
|
|
--prior_match_thr ${PRIOR_MATCH_THR} \
|
|
|
|
|
--output-dir ${OUTPUT_DIR}
|
|
|
|
|
```
|
|
|
|
|
|
2022-10-26 18:23:47 +08:00
|
|
|
|
## 提取 COCO 子集
|
|
|
|
|
|
|
|
|
|
COCO2017 数据集训练数据集包括 118K 张图片,验证集包括 5K 张图片,数据集比较大。在调试或者快速验证程序是否正确的场景下加载 json 会需要消耗较多资源和带来较慢的启动速度,这会导致程序体验不好。
|
|
|
|
|
`extract_subcoco.py` 脚本提供了切分指定张图片的功能,用户可以通过 `--num-img` 参数来得到指定图片数目的 COCO 子集,从而满足上述需求。
|
|
|
|
|
|
|
|
|
|
注意: 本脚本目前仅仅支持 COCO2017 数据集,未来会支持更加通用的 COCO JSON 格式数据集
|
|
|
|
|
|
|
|
|
|
输入 root 根路径文件夹格式如下所示:
|
|
|
|
|
|
|
|
|
|
```text
|
|
|
|
|
├── root
|
|
|
|
|
│ ├── annotations
|
|
|
|
|
│ ├── train2017
|
|
|
|
|
│ ├── val2017
|
|
|
|
|
│ ├── test2017
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
1. 仅仅使用 5K 张验证集切分出 10 张训练图片和 10 张验证图片
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
python tools/misc/extract_subcoco.py ${ROOT} ${OUT_DIR} --num-img 10
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
2. 使用训练集切分出 20 张训练图片,使用验证集切分出 20 张验证图片
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
python tools/misc/extract_subcoco.py ${ROOT} ${OUT_DIR} --num-img 20 --use-training-set
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
3. 设置全局种子,默认不设置
|
|
|
|
|
|
|
|
|
|
```shell
|
|
|
|
|
python tools/misc/extract_subcoco.py ${ROOT} ${OUT_DIR} --num-img 20 --use-training-set --seed 1
|
|
|
|
|
```
|