mirror of https://github.com/open-mmlab/mmyolo.git
432 lines
16 KiB
Markdown
432 lines
16 KiB
Markdown
|
# YOLOv5 部署全流程说明
|
|||
|
|
|||
|
请先参考 [`部署必备指南`](./mmdeploy_guide.md) 了解部署配置文件等相关信息。
|
|||
|
|
|||
|
## 模型训练和测试
|
|||
|
|
|||
|
模型训练和测试请参考 [YOLOv5 从入门到部署全流程](./mmdeploy_yolov5.md) 。
|
|||
|
|
|||
|
## 准备 MMDeploy 运行环境
|
|||
|
|
|||
|
安装 `MMDeploy` 请参考 [`源码手动安装`](https://github.com/open-mmlab/mmdeploy/blob/dev-1.x/docs/zh_cn/01-how-to-build/build_from_source.md) ,选择您所使用的平台编译 `MMDeploy` 和自定义算子。
|
|||
|
|
|||
|
*注意!* 如果环境安装有问题,可以查看 [`MMDeploy FAQ`](https://github.com/open-mmlab/mmdeploy/blob/dev-1.x/docs/zh_cn/faq.md) 或者在 `issuse` 中提出您的问题。
|
|||
|
|
|||
|
## 准备模型配置文件
|
|||
|
|
|||
|
本例将以基于 `coco` 数据集预训练的 `YOLOv5` 配置和权重进行部署的全流程讲解,包括静态/动态输入模型导出和推理,`TensorRT` / `ONNXRuntime` 两种后端部署和测试。
|
|||
|
|
|||
|
### 静态输入配置
|
|||
|
|
|||
|
#### (1) 模型配置文件
|
|||
|
|
|||
|
当您需要部署静态输入模型时,您应该确保模型的输入尺寸是固定的,比如在测试流程或测试数据集加载时输入尺寸为 `640x640`。
|
|||
|
|
|||
|
您可以查看 [`yolov5_s-static.py`](https://github.com/open-mmlab/mmyolo/tree/main/configs/deploy/model/yolov5_s-static.py) 中测试流程或测试数据集加载部分,如下所示:
|
|||
|
|
|||
|
```python
|
|||
|
_base_ = '../../yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py'
|
|||
|
|
|||
|
test_pipeline = [
|
|||
|
dict(type='LoadImageFromFile', file_client_args=_base_.file_client_args),
|
|||
|
dict(
|
|||
|
type='LetterResize',
|
|||
|
scale=_base_.img_scale,
|
|||
|
allow_scale_up=False,
|
|||
|
use_mini_pad=False,
|
|||
|
),
|
|||
|
dict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'),
|
|||
|
dict(
|
|||
|
type='mmdet.PackDetInputs',
|
|||
|
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
|||
|
'scale_factor', 'pad_param'))
|
|||
|
]
|
|||
|
|
|||
|
test_dataloader = dict(
|
|||
|
dataset=dict(pipeline=test_pipeline, batch_shapes_cfg=None))
|
|||
|
```
|
|||
|
|
|||
|
由于 `yolov5` 在测试时会开启 `allow_scale_up` 和 `use_mini_pad` 改变输入图像的尺寸来取得更高的精度,但是会给部署静态输入模型造成输入尺寸不匹配的问题。
|
|||
|
|
|||
|
该配置相比与原始配置文件进行了如下修改:
|
|||
|
|
|||
|
- 关闭 `test_pipline` 中改变尺寸相关的配置,如 `LetterResize` 中 `allow_scale_up=False` 和 `use_mini_pad=False` 。
|
|||
|
- 关闭 `test_dataloader` 中 `batch shapes` 策略,即 `batch_shapes_cfg=None` 。
|
|||
|
|
|||
|
#### (2) 部署配置文件
|
|||
|
|
|||
|
当您部署在 `ONNXRuntime` 时,您可以查看 [`detection_onnxruntime_static.py`](https://github.com/open-mmlab/mmyolo/tree/main/configs/deploy/detection_onnxruntime_static.py) ,如下所示:
|
|||
|
|
|||
|
```python
|
|||
|
_base_ = ['./base_static.py']
|
|||
|
codebase_config = dict(
|
|||
|
type='mmyolo',
|
|||
|
task='ObjectDetection',
|
|||
|
model_type='end2end',
|
|||
|
post_processing=dict(
|
|||
|
score_threshold=0.05,
|
|||
|
confidence_threshold=0.005,
|
|||
|
iou_threshold=0.5,
|
|||
|
max_output_boxes_per_class=200,
|
|||
|
pre_top_k=5000,
|
|||
|
keep_top_k=100,
|
|||
|
background_label_id=-1),
|
|||
|
module=['mmyolo.deploy'])
|
|||
|
backend_config = dict(type='onnxruntime')
|
|||
|
```
|
|||
|
|
|||
|
默认配置中的 `post_processing` 后处理参数是当前模型与 `pytorch` 模型精度对齐的配置,若您需要修改相关参数,可以参考 [`部署必备指南`](./mmdeploy_guide.md) 的详细介绍。
|
|||
|
|
|||
|
当您部署在 `TensorRT` 时,您可以查看 [`detection_tensorrt_static-640x640.py`](https://github.com/open-mmlab/mmyolo/tree/main/configs/deploy/detection_tensorrt_static-640x640.py) ,如下所示:
|
|||
|
|
|||
|
```python
|
|||
|
_base_ = ['./base_static.py']
|
|||
|
onnx_config = dict(input_shape=(640, 640))
|
|||
|
backend_config = dict(
|
|||
|
type='tensorrt',
|
|||
|
common_config=dict(fp16_mode=False, max_workspace_size=1 << 30),
|
|||
|
model_inputs=[
|
|||
|
dict(
|
|||
|
input_shapes=dict(
|
|||
|
input=dict(
|
|||
|
min_shape=[1, 3, 640, 640],
|
|||
|
opt_shape=[1, 3, 640, 640],
|
|||
|
max_shape=[1, 3, 640, 640])))
|
|||
|
])
|
|||
|
use_efficientnms = False
|
|||
|
```
|
|||
|
|
|||
|
本例使用了默认的输入尺寸 `input_shape=(640, 640)` ,构建网络以 `fp32` 模式即 `fp16_mode=False`,并且默认构建 `TensorRT` 构建引擎所使用的显存 `max_workspace_size=1 << 30` 即最大为 `1GB` 显存。
|
|||
|
|
|||
|
### 动态输入配置
|
|||
|
|
|||
|
#### (1) 模型配置文件
|
|||
|
|
|||
|
当您需要部署动态输入模型时,模型的输入可以为任意尺寸(`TensorRT` 会限制最小和最大输入尺寸),因此使用默认的 [`yolov5_s-v61_syncbn_8xb16-300e_coco.py`](https://github.com/open-mmlab/mmyolo/tree/main/configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py) 模型配置文件即可,其中数据处理和数据集加载器部分如下所示:
|
|||
|
|
|||
|
```python
|
|||
|
batch_shapes_cfg = dict(
|
|||
|
type='BatchShapePolicy',
|
|||
|
batch_size=val_batch_size_per_gpu,
|
|||
|
img_size=img_scale[0],
|
|||
|
size_divisor=32,
|
|||
|
extra_pad_ratio=0.5)
|
|||
|
|
|||
|
test_pipeline = [
|
|||
|
dict(type='LoadImageFromFile', file_client_args=_base_.file_client_args),
|
|||
|
dict(type='YOLOv5KeepRatioResize', scale=img_scale),
|
|||
|
dict(
|
|||
|
type='LetterResize',
|
|||
|
scale=img_scale,
|
|||
|
allow_scale_up=False,
|
|||
|
pad_val=dict(img=114)),
|
|||
|
dict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'),
|
|||
|
dict(
|
|||
|
type='mmdet.PackDetInputs',
|
|||
|
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
|||
|
'scale_factor', 'pad_param'))
|
|||
|
]
|
|||
|
|
|||
|
val_dataloader = dict(
|
|||
|
batch_size=val_batch_size_per_gpu,
|
|||
|
num_workers=val_num_workers,
|
|||
|
persistent_workers=persistent_workers,
|
|||
|
pin_memory=True,
|
|||
|
drop_last=False,
|
|||
|
sampler=dict(type='DefaultSampler', shuffle=False),
|
|||
|
dataset=dict(
|
|||
|
type=dataset_type,
|
|||
|
data_root=data_root,
|
|||
|
test_mode=True,
|
|||
|
data_prefix=dict(img='val2017/'),
|
|||
|
ann_file='annotations/instances_val2017.json',
|
|||
|
pipeline=test_pipeline,
|
|||
|
batch_shapes_cfg=batch_shapes_cfg))
|
|||
|
```
|
|||
|
|
|||
|
其中 `LetterResize` 类初始化传入了 `allow_scale_up=False` 控制输入的小图像是否上采样,同时默认 `use_mini_pad=False` 关闭了图片最小填充策略,`val_dataloader['dataset']`中传入了 `batch_shapes_cfg=batch_shapes_cfg`,即按照 `batch` 内的输入尺寸进行最小填充。上述策略会改变输入图像的尺寸,因此动态输入模型在测试时会按照上述数据集加载器动态输入。
|
|||
|
|
|||
|
#### (2) 部署配置文件
|
|||
|
|
|||
|
当您部署在 `ONNXRuntime` 时,您可以查看 [`detection_onnxruntime_dynamic.py`](https://github.com/open-mmlab/mmyolo/blob/main/configs/deploy/detection_onnxruntime_dynamic.py) ,如下所示:
|
|||
|
|
|||
|
```python
|
|||
|
_base_ = ['./base_dynamic.py']
|
|||
|
codebase_config = dict(
|
|||
|
type='mmyolo',
|
|||
|
task='ObjectDetection',
|
|||
|
model_type='end2end',
|
|||
|
post_processing=dict(
|
|||
|
score_threshold=0.05,
|
|||
|
confidence_threshold=0.005,
|
|||
|
iou_threshold=0.5,
|
|||
|
max_output_boxes_per_class=200,
|
|||
|
pre_top_k=5000,
|
|||
|
keep_top_k=100,
|
|||
|
background_label_id=-1),
|
|||
|
module=['mmyolo.deploy'])
|
|||
|
backend_config = dict(type='onnxruntime')
|
|||
|
```
|
|||
|
|
|||
|
与静态输入配置仅有 `_base_ = ['./base_dynamic.py']` 不同,动态输入会额外继承 `dynamic_axes` 属性。其他配置与静态输入配置相同。
|
|||
|
|
|||
|
当您部署在 `TensorRT` 时,您可以查看 [`detection_tensorrt_dynamic-192x192-960x960.py`](https://github.com/open-mmlab/mmyolo/tree/main/configs/deploy/detection_tensorrt_dynamic-192x192-960x960.py) ,如下所示:
|
|||
|
|
|||
|
```python
|
|||
|
_base_ = ['./base_dynamic.py']
|
|||
|
backend_config = dict(
|
|||
|
type='tensorrt',
|
|||
|
common_config=dict(fp16_mode=False, max_workspace_size=1 << 30),
|
|||
|
model_inputs=[
|
|||
|
dict(
|
|||
|
input_shapes=dict(
|
|||
|
input=dict(
|
|||
|
min_shape=[1, 3, 192, 192],
|
|||
|
opt_shape=[1, 3, 640, 640],
|
|||
|
max_shape=[1, 3, 960, 960])))
|
|||
|
])
|
|||
|
use_efficientnms = False
|
|||
|
```
|
|||
|
|
|||
|
本例构建网络以 `fp32` 模式即 `fp16_mode=False`,构建 `TensorRT` 构建引擎所使用的显存 `max_workspace_size=1 << 30` 即最大为 `1GB` 显存。
|
|||
|
|
|||
|
同时默认配置 `min_shape=[1, 3, 192, 192]`,`opt_shape=[1, 3, 640, 640]` ,`max_shape=[1, 3, 960, 960]` ,意为该模型所能接受的输入尺寸最小为 `192x192` ,最大为 `960x960`,最常见尺寸为 `640x640`。
|
|||
|
|
|||
|
当您部署自己的模型时,需要根据您的输入图像尺寸进行调整。
|
|||
|
|
|||
|
## 模型转换
|
|||
|
|
|||
|
本教程所使用的 `MMDeploy` 根目录为 `/home/openmmlab/dev/mmdeploy`,请注意修改为您的 `MMDeploy` 目录。
|
|||
|
预训练权重下载于 [yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco/yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth) ,保存在本地的 `/home/openmmlab/dev/mmdeploy/yolov5s.pth`。
|
|||
|
|
|||
|
```shell
|
|||
|
wget https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco/yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth -O /home/openmmlab/dev/mmdeploy/yolov5s.pth
|
|||
|
```
|
|||
|
|
|||
|
命令行执行以下命令配置相关路径:
|
|||
|
|
|||
|
```shell
|
|||
|
export MMDEPLOY_DIR=/home/openmmlab/dev/mmdeploy
|
|||
|
export PATH_TO_CHECKPOINTS=/home/openmmlab/dev/mmdeploy/yolov5s.pth
|
|||
|
```
|
|||
|
|
|||
|
### YOLOv5 静态输入模型导出
|
|||
|
|
|||
|
#### ONNXRuntime
|
|||
|
|
|||
|
```shell
|
|||
|
python3 ${MMDEPLOY_DIR}/tools/deploy.py \
|
|||
|
configs/deploy/detection_onnxruntime_static.py \
|
|||
|
configs/deploy/model/yolov5_s-static.py \
|
|||
|
${PATH_TO_CHECKPOINTS} \
|
|||
|
demo/demo.jpg \
|
|||
|
--work-dir work_dir \
|
|||
|
--show \
|
|||
|
--device cpu
|
|||
|
```
|
|||
|
|
|||
|
#### TensorRT
|
|||
|
|
|||
|
```shell
|
|||
|
python3 ${MMDEPLOY_DIR}/tools/deploy.py \
|
|||
|
configs/deploy/detection_tensorrt_static-640x640.py \
|
|||
|
configs/deploy/model/yolov5_s-static.py \
|
|||
|
${PATH_TO_CHECKPOINTS} \
|
|||
|
demo/demo.jpg \
|
|||
|
--work-dir work_dir \
|
|||
|
--show \
|
|||
|
--device cuda:0
|
|||
|
```
|
|||
|
|
|||
|
### YOLOv5 动态输入模型导出
|
|||
|
|
|||
|
#### ONNXRuntime
|
|||
|
|
|||
|
```shell
|
|||
|
python3 ${MMDEPLOY_DIR}/tools/deploy.py \
|
|||
|
configs/deploy/detection_onnxruntime_dynamic.py \
|
|||
|
configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py \
|
|||
|
${PATH_TO_CHECKPOINTS} \
|
|||
|
demo/demo.jpg \
|
|||
|
--work-dir work_dir \
|
|||
|
--show \
|
|||
|
--device cpu
|
|||
|
```
|
|||
|
|
|||
|
#### TensorRT
|
|||
|
|
|||
|
```shell
|
|||
|
python3 ${MMDEPLOY_DIR}/tools/deploy.py \
|
|||
|
configs/deploy/detection_tensorrt_dynamic-192x192-960x960.py \
|
|||
|
configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py \
|
|||
|
${PATH_TO_CHECKPOINTS} \
|
|||
|
demo/demo.jpg \
|
|||
|
--work-dir work_dir \
|
|||
|
--show \
|
|||
|
--device cuda:0
|
|||
|
```
|
|||
|
|
|||
|
当您使用上述命令转换模型时,您将会在 `work_dir` 文件夹下发现以下文件:
|
|||
|
|
|||
|

|
|||
|
|
|||
|
或者
|
|||
|
|
|||
|

|
|||
|
|
|||
|
在导出 `onnxruntime`模型后,您将得到图1的三个文件,其中 `end2end.onnx` 表示导出的`onnxruntime`模型。
|
|||
|
|
|||
|
在导出 `TensorRT`模型后,您将得到图2的四个文件,其中 `end2end.onnx` 表示导出的中间模型,`MMDeploy`利用该模型自动继续转换获得 `end2end.engine` 模型用于 `TensorRT `部署。
|
|||
|
|
|||
|
## 模型评测
|
|||
|
|
|||
|
当您转换模型成功后,可以使用 `${MMDEPLOY_DIR}/tools/test.py` 工具对转换后的模型进行评测。下面是对 `ONNXRuntime` 和 `TensorRT` 静态模型的评测,动态模型评测修改传入模型配置即可。
|
|||
|
|
|||
|
### ONNXRuntime
|
|||
|
|
|||
|
```shell
|
|||
|
python3 ${MMDEPLOY_DIR}/tools/test.py \
|
|||
|
configs/deploy/detection_onnxruntime_static.py \
|
|||
|
configs/deploy/model/yolov5_s-static.py \
|
|||
|
--model work_dir/end2end.onnx \
|
|||
|
--device cpu \
|
|||
|
--work-dir work_dir
|
|||
|
```
|
|||
|
|
|||
|
执行完成您将看到命令行输出检测结果指标如下:
|
|||
|
|
|||
|

|
|||
|
|
|||
|
### TensorRT
|
|||
|
|
|||
|
**注意**: TensorRT 需要执行设备是 `cuda`
|
|||
|
|
|||
|
```shell
|
|||
|
python3 ${MMDEPLOY_DIR}/tools/test.py \
|
|||
|
configs/deploy/detection_tensorrt_static-640x640.py \
|
|||
|
configs/deploy/model/yolov5_s-static.py \
|
|||
|
--model work_dir/end2end.engine \
|
|||
|
--device cuda:0 \
|
|||
|
--work-dir work_dir
|
|||
|
```
|
|||
|
|
|||
|
执行完成您将看到命令行输出检测结果指标如下:
|
|||
|
|
|||
|

|
|||
|
|
|||
|
**未来我们将会支持模型测速等更加实用的脚本**
|
|||
|
|
|||
|
# 使用 Docker 部署测试
|
|||
|
|
|||
|
`MMYOLO` 提供了一个 [`Dockerfile`](https://github.com/open-mmlab/mmyolo/blob/main/docker/Dockerfile_deployment) 用于构建镜像。请确保您的 `docker` 版本大于等于 `19.03`。
|
|||
|
|
|||
|
温馨提示;国内用户建议取消掉 [`Dockerfile`](https://github.com/open-mmlab/mmyolo/blob/main/docker/Dockerfile_deployment) 里面 `Optional` 后两行的注释,可以获得火箭一般的下载提速:
|
|||
|
|
|||
|
```dockerfile
|
|||
|
# (Optional)
|
|||
|
RUN sed -i 's/http:\/\/archive.ubuntu.com\/ubuntu\//http:\/\/mirrors.aliyun.com\/ubuntu\//g' /etc/apt/sources.list && \
|
|||
|
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
|
|||
|
```
|
|||
|
|
|||
|
构建命令:
|
|||
|
|
|||
|
```bash
|
|||
|
# build an image with PyTorch 1.12, CUDA 11.6, TensorRT 8.2.4 ONNXRuntime 1.8.1
|
|||
|
docker build -f docker/Dockerfile_deployment -t mmyolo:v1 .
|
|||
|
```
|
|||
|
|
|||
|
用以下命令运行 Docker 镜像:
|
|||
|
|
|||
|
```bash
|
|||
|
export DATA_DIR=/path/to/your/dataset
|
|||
|
docker run --gpus all --shm-size=8g -it --name mmyolo -v ${DATA_DIR}:/openmmlab/mmyolo/data/coco mmyolo:v1
|
|||
|
```
|
|||
|
|
|||
|
`DATA_DIR` 是 COCO 数据的路径。
|
|||
|
|
|||
|
复制以下脚本到 `docker` 容器 `/openmmlab/mmyolo/script.sh`:
|
|||
|
|
|||
|
```bash
|
|||
|
#!/bin/bash
|
|||
|
wget -q https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco/yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth \
|
|||
|
-O yolov5s.pth
|
|||
|
export MMDEPLOY_DIR=/openmmlab/mmdeploy
|
|||
|
export PATH_TO_CHECKPOINTS=/openmmlab/mmyolo/yolov5s.pth
|
|||
|
|
|||
|
python3 ${MMDEPLOY_DIR}/tools/deploy.py \
|
|||
|
configs/deploy/detection_tensorrt_static-640x640.py \
|
|||
|
configs/deploy/model/yolov5_s-static.py \
|
|||
|
${PATH_TO_CHECKPOINTS} \
|
|||
|
demo/demo.jpg \
|
|||
|
--work-dir work_dir_trt \
|
|||
|
--device cuda:0
|
|||
|
|
|||
|
python3 ${MMDEPLOY_DIR}/tools/test.py \
|
|||
|
configs/deploy/detection_tensorrt_static-640x640.py \
|
|||
|
configs/deploy/model/yolov5_s-static.py \
|
|||
|
--model work_dir_trt/end2end.engine \
|
|||
|
--device cuda:0 \
|
|||
|
--work-dir work_dir_trt
|
|||
|
|
|||
|
python3 ${MMDEPLOY_DIR}/tools/deploy.py \
|
|||
|
configs/deploy/detection_onnxruntime_static.py \
|
|||
|
configs/deploy/model/yolov5_s-static.py \
|
|||
|
${PATH_TO_CHECKPOINTS} \
|
|||
|
demo/demo.jpg \
|
|||
|
--work-dir work_dir_ort \
|
|||
|
--device cpu
|
|||
|
|
|||
|
python3 ${MMDEPLOY_DIR}/tools/test.py \
|
|||
|
configs/deploy/detection_onnxruntime_static.py \
|
|||
|
configs/deploy/model/yolov5_s-static.py \
|
|||
|
--model work_dir_ort/end2end.onnx \
|
|||
|
--device cpu \
|
|||
|
--work-dir work_dir_ort
|
|||
|
```
|
|||
|
|
|||
|
在 `/openmmlab/mmyolo` 下运行:
|
|||
|
|
|||
|
```bash
|
|||
|
sh script.sh
|
|||
|
```
|
|||
|
|
|||
|
脚本会自动下载 `MMYOLO` 的 `YOLOv5` 预训练权重并使用 `MMDeploy` 进行模型转换和测试。您将会看到以下输出:
|
|||
|
|
|||
|
- TensorRT:
|
|||
|
|
|||
|

|
|||
|
|
|||
|
- ONNXRuntime:
|
|||
|
|
|||
|

|
|||
|
|
|||
|
可以看到,经过 `MMDeploy` 部署的模型与 [MMYOLO-YOLOv5](https://github.com/open-mmlab/mmyolo/tree/main/configs/yolov5#results-and-models) 的 mAP-37.7 差距在 1% 以内。
|
|||
|
|
|||
|
如果您需要测试您的模型推理速度,可以使用以下命令:
|
|||
|
|
|||
|
- TensorRT
|
|||
|
|
|||
|
```shell
|
|||
|
python3 ${MMDEPLOY_DIR}/tools/profiler.py \
|
|||
|
configs/deploy/detection_tensorrt_static-640x640.py \
|
|||
|
configs/deploy/model/yolov5_s-static.py \
|
|||
|
data/coco/val2017 \
|
|||
|
--model work_dir_trt/end2end.engine \
|
|||
|
--device cuda:0
|
|||
|
```
|
|||
|
|
|||
|
- ONNXRuntime
|
|||
|
|
|||
|
```shell
|
|||
|
python3 ${MMDEPLOY_DIR}/tools/profiler.py \
|
|||
|
configs/deploy/detection_onnxruntime_static.py \
|
|||
|
configs/deploy/model/yolov5_s-static.py \
|
|||
|
data/coco/val2017 \
|
|||
|
--model work_dir_ort/end2end.onnx \
|
|||
|
--device cpu
|
|||
|
```
|
|||
|
|
|||
|
## 模型推理
|
|||
|
|
|||
|
TODO
|