> [YOLOX: Exceeding YOLO Series in 2021](https://arxiv.org/abs/2107.08430)
<!-- [ALGORITHM] -->
## Abstract
In this report, we present some experienced improvements to YOLO series, forming a new high-performance detector -- YOLOX. We switch the YOLO detector to an anchor-free manner and conduct other advanced detection techniques, i.e., a decoupled head and the leading label assignment strategy SimOTA to achieve state-of-the-art results across a large scale range of models: For YOLO-Nano with only 0.91M parameters and 1.08G FLOPs, we get 25.3% AP on COCO, surpassing NanoDet by 1.8% AP; for YOLOv3, one of the most widely used detectors in industry, we boost it to 47.3% AP on COCO, outperforming the current best practice by 3.0% AP; for YOLOX-L with roughly the same amount of parameters as YOLOv4-CSP, YOLOv5-L, we achieve 50.0% AP on COCO at a speed of 68.9 FPS on Tesla V100, exceeding YOLOv5-L by 1.8% AP. Further, we won the 1st Place on Streaming Perception Challenge (Workshop on Autonomous Driving at CVPR 2021) using a single YOLOX-L model. We hope this report can provide useful experience for developers and researchers in practical scenes, and we also provide deploy versions with ONNX, TensorRT, NCNN, and Openvino supported.
YOLOX uses a default training configuration of `8xbs8` which results in a long training time, we expect it to use `8xbs32` to speed up the training and not cause a decrease in mAP. We modified `train_batch_size_per_gpu` from 8 to 32, `batch_augments_interval` from 10 to 1 and `base_lr` from 0.01 to 0.04 under YOLOX-s default configuration based on the linear scaling rule, which resulted in mAP degradation. Finally, I found that using RTMDet's training hyperparameter can improve performance in YOLOX Tiny/S/M, which also validates the superiority of RTMDet's training hyperparameter.
2. Due to the need for pre-training weights, we cannot reproduce the performance of the `yolox-nano` model. Please refer to https://github.com/Megvii-BaseDetection/YOLOX/issues/674 for more information.
Based on [MMPose](https://github.com/open-mmlab/mmpose/blob/main/projects/yolox-pose/README.md), we have implemented a YOLOX-based human pose estimator, utilizing the approach outlined in **YOLO-Pose: Enhancing YOLO for Multi Person Pose Estimation Using Object Keypoint Similarity Loss (CVPRW 2022)**. This pose estimator is lightweight and quick, making it well-suited for crowded scenes.
1. The performance is unstable and may fluctuate and the highest performance weight in `COCO` training may not be the last epoch. The performance shown above is the best model.