mmyolo/configs/yolov5/voc/yolov5_n-v61_fast_1xb64-50e_voc.py

18 lines
544 B
Python
Raw Normal View History

[Feature] Support VOC Dataset in YOLOv5 (#134) * add yolov5 voc training * fix mosaic bug * fix mosaic bug and temp config * fix mosaic bug * update config * support training on voc dataset * format code * format code * Optimize Code. Change `RandomTransform` to `OneOf` * Change `OneOf` to `mmcv.RandomChoice` * fix yolov5coco dataset * fix yolov5coco dataset * fix bug, format code * format config * format code * add yolov5 voc training * rebase * fix mosaic bug * update config * support training on voc dataset * format code * format code * Optimize Code. Change `RandomTransform` to `OneOf` * Change `OneOf` to `mmcv.RandomChoice` * fix yolov5coco dataset * fix yolov5coco dataset * fix bug, format code * format code * add yolov5 voc training * fix mosaic bug and temp config * fix mosaic bug * update config * support training on voc dataset * format code * format code * Optimize Code. Change `RandomTransform` to `OneOf` * Change `OneOf` to `mmcv.RandomChoice` * fix yolov5coco dataset * fix yolov5coco dataset * fix bug, format code * format code * add yolov5 voc training * rebase * fix mosaic bug * update config * support training on voc dataset * format code * format code * Optimize Code. Change `RandomTransform` to `OneOf` * Change `OneOf` to `mmcv.RandomChoice` * fix yolov5coco dataset * fix yolov5coco dataset * fix bug, format code * format code * format code * fix lint * add unittest * add auto loss_weight * add doc; add model log url * add doc; add model log url * add doc; add model log url
2022-10-18 17:06:49 +08:00
_base_ = './yolov5_s-v61_fast_1xb64-50e_voc.py'
deepen_factor = 0.33
widen_factor = 0.25
load_from = 'https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_n-v61_syncbn_fast_8xb16-300e_coco/yolov5_n-v61_syncbn_fast_8xb16-300e_coco_20220919_090739-b804c1ad.pth' # noqa
model = dict(
backbone=dict(
deepen_factor=deepen_factor,
widen_factor=widen_factor,
),
neck=dict(
deepen_factor=deepen_factor,
widen_factor=widen_factor,
),
bbox_head=dict(head_module=dict(widen_factor=widen_factor)))