mmyolo/configs/yolox/README.md

42 lines
3.7 KiB
Markdown
Raw Normal View History

2022-09-18 10:11:55 +08:00
# YOLOX
> [YOLOX: Exceeding YOLO Series in 2021](https://arxiv.org/abs/2107.08430)
<!-- [ALGORITHM] -->
## Abstract
In this report, we present some experienced improvements to YOLO series, forming a new high-performance detector -- YOLOX. We switch the YOLO detector to an anchor-free manner and conduct other advanced detection techniques, i.e., a decoupled head and the leading label assignment strategy SimOTA to achieve state-of-the-art results across a large scale range of models: For YOLO-Nano with only 0.91M parameters and 1.08G FLOPs, we get 25.3% AP on COCO, surpassing NanoDet by 1.8% AP; for YOLOv3, one of the most widely used detectors in industry, we boost it to 47.3% AP on COCO, outperforming the current best practice by 3.0% AP; for YOLOX-L with roughly the same amount of parameters as YOLOv4-CSP, YOLOv5-L, we achieve 50.0% AP on COCO at a speed of 68.9 FPS on Tesla V100, exceeding YOLOv5-L by 1.8% AP. Further, we won the 1st Place on Streaming Perception Challenge (Workshop on Autonomous Driving at CVPR 2021) using a single YOLOX-L model. We hope this report can provide useful experience for developers and researchers in practical scenes, and we also provide deploy versions with ONNX, TensorRT, NCNN, and Openvino supported.
<div align=center>
<img src="https://user-images.githubusercontent.com/40661020/144001736-9fb303dd-eac7-46b0-ad45-214cfa51e928.png"/>
</div>
2023-01-07 17:44:19 +08:00
<div align=center>
2023-01-07 17:44:19 +08:00
<img src="https://user-images.githubusercontent.com/27466624/211143387-004c6718-3d61-44c8-9406-f56b9238452a.jpg"/>
YOLOX-l model structure
</div>
2022-09-18 10:11:55 +08:00
## Results and Models
| Backbone | size | Mem (GB) | box AP | Config | Download |
| :--------: | :--: | :------: | :----: | :--------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| YOLOX-tiny | 416 | 2.8 | 32.7 | [config](https://github.com/open-mmlab/mmyolo/tree/master/configs/yolox/yolox_tiny_fast_8xb8-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_tiny_8xb8-300e_coco/yolox_tiny_8xb8-300e_coco_20220919_090908-0e40a6fc.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_tiny_8xb8-300e_coco/yolox_tiny_8xb8-300e_coco_20220919_090908.log.json) |
| YOLOX-s | 640 | 5.6 | 40.8 | [config](https://github.com/open-mmlab/mmyolo/tree/master/configs/yolox/yolox_s_fast_8xb8-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_s_8xb8-300e_coco/yolox_s_8xb8-300e_coco_20220917_030738-d7e60cb2.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_s_8xb8-300e_coco/yolox_s_8xb8-300e_coco_20220917_030738.log.json) |
2022-09-18 10:11:55 +08:00
**Note**:
2022-09-19 13:01:47 +08:00
1. The test score threshold is 0.001.
2022-09-18 10:11:55 +08:00
2. Due to the need for pre-training weights, we cannot reproduce the performance of the `yolox-nano` model. Please refer to https://github.com/Megvii-BaseDetection/YOLOX/issues/674 for more information.
## Citation
```latex
@article{yolox2021,
title={{YOLOX}: Exceeding YOLO Series in 2021},
author={Ge, Zheng and Liu, Songtao and Wang, Feng and Li, Zeming and Sun, Jian},
journal={arXiv preprint arXiv:2107.08430},
year={2021}
}
```