mmyolo/tools/analysis_tools/browse_coco_json.py

148 lines
4.3 KiB
Python
Raw Normal View History

2022-09-18 10:11:55 +08:00
import argparse
import os.path as osp
import cv2
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.collections import PatchCollection
from matplotlib.patches import Polygon
from pycocotools.coco import COCO
def show_coco_json(args):
if args.data_root is not None:
coco = COCO(osp.join(args.data_root, args.ann_file))
else:
coco = COCO(args.ann_file)
2022-09-18 10:11:55 +08:00
print(f'Total number of images{len(coco.getImgIds())}')
categories = coco.loadCats(coco.getCatIds())
category_names = [category['name'] for category in categories]
print(f'Total number of Categories : {len(category_names)}')
print('Categories: \n{}\n'.format(' '.join(category_names)))
if args.category_names is None:
category_ids = []
else:
assert set(category_names) > set(args.category_names)
category_ids = coco.getCatIds(args.category_names)
image_ids = coco.getImgIds(catIds=category_ids)
if args.shuffle:
np.random.shuffle(image_ids)
for i in range(len(image_ids)):
image_data = coco.loadImgs(image_ids[i])[0]
if args.data_root is not None:
image_path = osp.join(args.data_root, args.img_dir,
image_data['file_name'])
else:
image_path = osp.join(args.img_dir, image_data['file_name'])
2022-09-18 10:11:55 +08:00
annotation_ids = coco.getAnnIds(
imgIds=image_data['id'], catIds=category_ids, iscrowd=0)
annotations = coco.loadAnns(annotation_ids)
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
plt.figure()
plt.imshow(image)
if args.disp_all:
coco.showAnns(annotations)
else:
show_bbox_only(coco, annotations)
if args.wait_time == 0:
plt.show()
else:
plt.show(block=False)
plt.pause(args.wait_time)
plt.close()
def show_bbox_only(coco, anns, show_label_bbox=True, is_filling=True):
"""Show bounding box of annotations Only."""
if len(anns) == 0:
return
ax = plt.gca()
ax.set_autoscale_on(False)
image2color = dict()
for cat in coco.getCatIds():
image2color[cat] = (np.random.random((1, 3)) * 0.7 + 0.3).tolist()[0]
polygons = []
colors = []
for ann in anns:
color = image2color[ann['category_id']]
bbox_x, bbox_y, bbox_w, bbox_h = ann['bbox']
poly = [[bbox_x, bbox_y], [bbox_x, bbox_y + bbox_h],
[bbox_x + bbox_w, bbox_y + bbox_h], [bbox_x + bbox_w, bbox_y]]
polygons.append(Polygon(np.array(poly).reshape((4, 2))))
colors.append(color)
if show_label_bbox:
label_bbox = dict(facecolor=color)
else:
label_bbox = None
ax.text(
bbox_x,
bbox_y,
'%s' % (coco.loadCats(ann['category_id'])[0]['name']),
color='white',
bbox=label_bbox)
if is_filling:
p = PatchCollection(
polygons, facecolor=colors, linewidths=0, alpha=0.4)
ax.add_collection(p)
p = PatchCollection(
polygons, facecolor='none', edgecolors=colors, linewidths=2)
ax.add_collection(p)
def parse_args():
parser = argparse.ArgumentParser(description='Show coco json file')
parser.add_argument('--data-root', default=None, help='dataset root')
2022-09-18 10:11:55 +08:00
parser.add_argument(
'--img-dir', default='data/coco/train2017', help='image folder path')
2022-09-18 10:11:55 +08:00
parser.add_argument(
'--ann-file',
default='data/coco/annotations/instances_train2017.json',
2022-09-18 10:11:55 +08:00
help='ann file path')
parser.add_argument(
'--wait-time', type=float, default=2, help='the interval of show (s)')
parser.add_argument(
'--disp-all',
action='store_true',
help='Whether to display all types of data, '
'such as bbox and mask.'
' Default is to display only bbox')
parser.add_argument(
'--category-names',
type=str,
default=None,
nargs='+',
help='Display category-specific data, e.g., "bicycle", "person"')
parser.add_argument(
'--shuffle',
action='store_true',
help='Whether to display in disorder')
args = parser.parse_args()
return args
def main():
2022-09-18 10:11:55 +08:00
args = parse_args()
show_coco_json(args)
if __name__ == '__main__':
main()