2022-10-30 15:49:13 +08:00
|
|
|
|
# How to xxx
|
|
|
|
|
|
2022-09-29 15:36:32 +08:00
|
|
|
|
本教程收集了任何如何使用 MMYOLO 进行 xxx 的答案。 如果您遇到有关`如何做`的问题及答案,请随时更新此文档!
|
|
|
|
|
|
2022-10-30 15:49:13 +08:00
|
|
|
|
## 给主干网络增加插件
|
2022-09-29 15:36:32 +08:00
|
|
|
|
|
2022-11-10 10:03:04 +08:00
|
|
|
|
[更多的插件使用](plugins.md)
|
2022-09-29 15:36:32 +08:00
|
|
|
|
|
|
|
|
|
## 应用多个 Neck
|
|
|
|
|
|
2022-11-10 10:03:04 +08:00
|
|
|
|
如果你想堆叠多个 Neck,可以直接在配置文件中的 Neck 参数,MMYOLO 支持以 `List` 形式拼接多个 Neck 配置,你需要保证上一个 Neck 的输出通道与下一个 Neck
|
|
|
|
|
的输入通道相匹配。如需要调整通道,可以插入 `mmdet.ChannelMapper` 模块用来对齐多个 Neck 之间的通道数量。具体配置如下:
|
2022-09-29 15:36:32 +08:00
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
_base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'
|
|
|
|
|
|
2022-10-27 10:29:39 +08:00
|
|
|
|
deepen_factor = _base_.deepen_factor
|
|
|
|
|
widen_factor = _base_.widen_factor
|
2022-09-29 15:36:32 +08:00
|
|
|
|
model = dict(
|
|
|
|
|
type='YOLODetector',
|
|
|
|
|
neck=[
|
|
|
|
|
dict(
|
|
|
|
|
type='YOLOv5PAFPN',
|
|
|
|
|
deepen_factor=deepen_factor,
|
|
|
|
|
widen_factor=widen_factor,
|
|
|
|
|
in_channels=[256, 512, 1024],
|
2022-11-10 10:03:04 +08:00
|
|
|
|
out_channels=[256, 512, 1024],
|
|
|
|
|
# 因为 out_channels 由 widen_factor 控制,YOLOv5PAFPN 的 out_channels = out_channels * widen_factor
|
2022-09-29 15:36:32 +08:00
|
|
|
|
num_csp_blocks=3,
|
|
|
|
|
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
|
|
|
|
|
act_cfg=dict(type='SiLU', inplace=True)),
|
|
|
|
|
dict(
|
|
|
|
|
type='mmdet.ChannelMapper',
|
|
|
|
|
in_channels=[128, 256, 512],
|
|
|
|
|
out_channels=128,
|
|
|
|
|
),
|
|
|
|
|
dict(
|
|
|
|
|
type='mmdet.DyHead',
|
|
|
|
|
in_channels=128,
|
|
|
|
|
out_channels=256,
|
|
|
|
|
num_blocks=2,
|
|
|
|
|
# disable zero_init_offset to follow official implementation
|
|
|
|
|
zero_init_offset=False)
|
2022-11-10 10:03:04 +08:00
|
|
|
|
],
|
|
|
|
|
bbox_head=dict(head_module=dict(in_channels=[512, 512, 512]))
|
|
|
|
|
# 因为 out_channels 由 widen_factor 控制,YOLOv5HeadModuled 的 in_channels * widen_factor 才会等于最后一个 neck 的 out_channels
|
2022-10-27 10:29:39 +08:00
|
|
|
|
)
|
2022-09-29 15:36:32 +08:00
|
|
|
|
```
|
2022-10-30 15:49:13 +08:00
|
|
|
|
|
|
|
|
|
## 跨库使用主干网络
|
|
|
|
|
|
2022-11-10 10:03:04 +08:00
|
|
|
|
OpenMMLab 2.0 体系中 MMYOLO、MMDetection、MMClassification、MMSegmentation 中的模型注册表都继承自 MMEngine 中的根注册表,允许这些 OpenMMLab
|
|
|
|
|
开源库直接使用彼此已经实现的模块。 因此用户可以在 MMYOLO 中使用来自 MMDetection、MMClassification 的主干网络,而无需重新实现。
|
2022-10-30 15:49:13 +08:00
|
|
|
|
|
|
|
|
|
```{note}
|
|
|
|
|
1. 使用其他主干网络时,你需要保证主干网络的输出通道与 Neck 的输入通道相匹配。
|
|
|
|
|
2. 下面给出的配置文件,仅能确保训练可以正确运行,直接训练性能可能不是最优的。因为某些 backbone 需要配套特定的学习率、优化器等超参数。后续会在“训练技巧章节”补充训练调优相关内容。
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### 使用在 MMDetection 中实现的主干网络
|
|
|
|
|
|
|
|
|
|
1. 假设想将 `ResNet-50` 作为 `YOLOv5` 的主干网络,则配置文件如下:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
_base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'
|
|
|
|
|
|
|
|
|
|
deepen_factor = _base_.deepen_factor
|
|
|
|
|
widen_factor = 1.0
|
|
|
|
|
channels = [512, 1024, 2048]
|
|
|
|
|
|
|
|
|
|
model = dict(
|
|
|
|
|
backbone=dict(
|
|
|
|
|
_delete_=True, # 将 _base_ 中关于 backbone 的字段删除
|
|
|
|
|
type='mmdet.ResNet', # 使用 mmdet 中的 ResNet
|
|
|
|
|
depth=50,
|
|
|
|
|
num_stages=4,
|
|
|
|
|
out_indices=(1, 2, 3),
|
|
|
|
|
frozen_stages=1,
|
|
|
|
|
norm_cfg=dict(type='BN', requires_grad=True),
|
|
|
|
|
norm_eval=True,
|
|
|
|
|
style='pytorch',
|
|
|
|
|
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
|
|
|
|
neck=dict(
|
|
|
|
|
type='YOLOv5PAFPN',
|
|
|
|
|
widen_factor=widen_factor,
|
|
|
|
|
in_channels=channels, # 注意:ResNet-50 输出的3个通道是 [512, 1024, 2048],和原先的 yolov5-s neck 不匹配,需要更改
|
|
|
|
|
out_channels=channels),
|
|
|
|
|
bbox_head=dict(
|
|
|
|
|
type='YOLOv5Head',
|
|
|
|
|
head_module=dict(
|
|
|
|
|
type='YOLOv5HeadModule',
|
|
|
|
|
in_channels=channels, # head 部分输入通道也要做相应更改
|
|
|
|
|
widen_factor=widen_factor))
|
|
|
|
|
)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
2. 假设想将 `SwinTransformer-Tiny` 作为 `YOLOv5` 的主干网络,则配置文件如下:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
_base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'
|
|
|
|
|
|
|
|
|
|
deepen_factor = _base_.deepen_factor
|
|
|
|
|
widen_factor = 1.0
|
|
|
|
|
channels = [192, 384, 768]
|
|
|
|
|
checkpoint_file = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth' # noqa
|
|
|
|
|
|
|
|
|
|
model = dict(
|
|
|
|
|
backbone=dict(
|
|
|
|
|
_delete_=True, # 将 _base_ 中关于 backbone 的字段删除
|
|
|
|
|
type='mmdet.SwinTransformer', # 使用 mmdet 中的 SwinTransformer
|
|
|
|
|
embed_dims=96,
|
|
|
|
|
depths=[2, 2, 6, 2],
|
|
|
|
|
num_heads=[3, 6, 12, 24],
|
|
|
|
|
window_size=7,
|
|
|
|
|
mlp_ratio=4,
|
|
|
|
|
qkv_bias=True,
|
|
|
|
|
qk_scale=None,
|
|
|
|
|
drop_rate=0.,
|
|
|
|
|
attn_drop_rate=0.,
|
|
|
|
|
drop_path_rate=0.2,
|
|
|
|
|
patch_norm=True,
|
|
|
|
|
out_indices=(1, 2, 3),
|
|
|
|
|
with_cp=False,
|
|
|
|
|
convert_weights=True,
|
|
|
|
|
init_cfg=dict(type='Pretrained', checkpoint=checkpoint_file)),
|
|
|
|
|
neck=dict(
|
|
|
|
|
type='YOLOv5PAFPN',
|
|
|
|
|
deepen_factor=deepen_factor,
|
|
|
|
|
widen_factor=widen_factor,
|
|
|
|
|
in_channels=channels, # 注意:SwinTransformer-Tiny 输出的3个通道是 [192, 384, 768],和原先的 yolov5-s neck 不匹配,需要更改
|
|
|
|
|
out_channels=channels),
|
|
|
|
|
bbox_head=dict(
|
|
|
|
|
type='YOLOv5Head',
|
|
|
|
|
head_module=dict(
|
|
|
|
|
type='YOLOv5HeadModule',
|
|
|
|
|
in_channels=channels, # head 部分输入通道也要做相应更改
|
|
|
|
|
widen_factor=widen_factor))
|
|
|
|
|
)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### 使用在 MMClassification 中实现的主干网络
|
|
|
|
|
|
|
|
|
|
1. 假设想将 `ConvNeXt-Tiny` 作为 `YOLOv5` 的主干网络,则配置文件如下:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
_base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'
|
|
|
|
|
|
|
|
|
|
# 请先使用命令: mim install "mmcls>=1.0.0rc2",安装 mmcls
|
|
|
|
|
# 导入 mmcls.models 使得可以调用 mmcls 中注册的模块
|
|
|
|
|
custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False)
|
|
|
|
|
checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-tiny_3rdparty_32xb128-noema_in1k_20220301-795e9634.pth' # noqa
|
|
|
|
|
deepen_factor = _base_.deepen_factor
|
|
|
|
|
widen_factor = 1.0
|
|
|
|
|
channels = [192, 384, 768]
|
|
|
|
|
|
|
|
|
|
model = dict(
|
|
|
|
|
backbone=dict(
|
|
|
|
|
_delete_=True, # 将 _base_ 中关于 backbone 的字段删除
|
|
|
|
|
type='mmcls.ConvNeXt', # 使用 mmcls 中的 ConvNeXt
|
|
|
|
|
arch='tiny',
|
|
|
|
|
out_indices=(1, 2, 3),
|
|
|
|
|
drop_path_rate=0.4,
|
|
|
|
|
layer_scale_init_value=1.0,
|
|
|
|
|
gap_before_final_norm=False,
|
|
|
|
|
init_cfg=dict(
|
|
|
|
|
type='Pretrained', checkpoint=checkpoint_file,
|
|
|
|
|
prefix='backbone.')), # MMCls 中主干网络的预训练权重含义 prefix='backbone.',为了正常加载权重,需要把这个 prefix 去掉。
|
|
|
|
|
neck=dict(
|
|
|
|
|
type='YOLOv5PAFPN',
|
|
|
|
|
deepen_factor=deepen_factor,
|
|
|
|
|
widen_factor=widen_factor,
|
|
|
|
|
in_channels=channels, # 注意:ConvNeXt-Tiny 输出的3个通道是 [192, 384, 768],和原先的 yolov5-s neck 不匹配,需要更改
|
|
|
|
|
out_channels=channels),
|
|
|
|
|
bbox_head=dict(
|
|
|
|
|
type='YOLOv5Head',
|
|
|
|
|
head_module=dict(
|
|
|
|
|
type='YOLOv5HeadModule',
|
|
|
|
|
in_channels=channels, # head 部分输入通道也要做相应更改
|
|
|
|
|
widen_factor=widen_factor))
|
|
|
|
|
)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
2. 假设想将 `MobileNetV3-small` 作为 `YOLOv5` 的主干网络,则配置文件如下:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
_base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'
|
|
|
|
|
|
|
|
|
|
# 请先使用命令: mim install "mmcls>=1.0.0rc2",安装 mmcls
|
|
|
|
|
# 导入 mmcls.models 使得可以调用 mmcls 中注册的模块
|
|
|
|
|
custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False)
|
|
|
|
|
checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/mobilenet_v3/convert/mobilenet_v3_small-8427ecf0.pth' # noqa
|
|
|
|
|
deepen_factor = _base_.deepen_factor
|
|
|
|
|
widen_factor = 1.0
|
|
|
|
|
channels = [24, 48, 96]
|
|
|
|
|
|
|
|
|
|
model = dict(
|
|
|
|
|
backbone=dict(
|
|
|
|
|
_delete_=True, # 将 _base_ 中关于 backbone 的字段删除
|
|
|
|
|
type='mmcls.MobileNetV3', # 使用 mmcls 中的 MobileNetV3
|
|
|
|
|
arch='small',
|
|
|
|
|
out_indices=(3, 8, 11), # 修改 out_indices
|
|
|
|
|
init_cfg=dict(
|
|
|
|
|
type='Pretrained',
|
|
|
|
|
checkpoint=checkpoint_file,
|
|
|
|
|
prefix='backbone.')), # MMCls 中主干网络的预训练权重含义 prefix='backbone.',为了正常加载权重,需要把这个 prefix 去掉。
|
|
|
|
|
neck=dict(
|
|
|
|
|
type='YOLOv5PAFPN',
|
|
|
|
|
deepen_factor=deepen_factor,
|
|
|
|
|
widen_factor=widen_factor,
|
|
|
|
|
in_channels=channels, # 注意:MobileNetV3-small 输出的3个通道是 [24, 48, 96],和原先的 yolov5-s neck 不匹配,需要更改
|
|
|
|
|
out_channels=channels),
|
|
|
|
|
bbox_head=dict(
|
|
|
|
|
type='YOLOv5Head',
|
|
|
|
|
head_module=dict(
|
|
|
|
|
type='YOLOv5HeadModule',
|
|
|
|
|
in_channels=channels, # head 部分输入通道也要做相应更改
|
|
|
|
|
widen_factor=widen_factor))
|
|
|
|
|
)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### 通过 MMClassification 使用 `timm` 中实现的主干网络
|
|
|
|
|
|
2022-11-10 10:03:04 +08:00
|
|
|
|
由于 MMClassification 提供了 Py**T**orch **Im**age **M**odels (`timm`) 主干网络的封装,用户也可以通过 MMClassification 直接使用 `timm`
|
|
|
|
|
中的主干网络。假设想将 `EfficientNet-B1`作为 `YOLOv5` 的主干网络,则配置文件如下:
|
2022-10-30 15:49:13 +08:00
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
_base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'
|
|
|
|
|
|
|
|
|
|
# 请先使用命令: mim install "mmcls>=1.0.0rc2",安装 mmcls
|
|
|
|
|
# 以及: pip install timm,安装 timm
|
|
|
|
|
# 导入 mmcls.models 使得可以调用 mmcls 中注册的模块
|
|
|
|
|
custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False)
|
|
|
|
|
|
|
|
|
|
deepen_factor = _base_.deepen_factor
|
|
|
|
|
widen_factor = 1.0
|
|
|
|
|
channels = [40, 112, 320]
|
|
|
|
|
|
|
|
|
|
model = dict(
|
|
|
|
|
backbone=dict(
|
2022-11-10 10:03:04 +08:00
|
|
|
|
_delete_=True, # 将 _base_ 中关于 backbone 的字段删除
|
|
|
|
|
type='mmcls.TIMMBackbone', # 使用 mmcls 中的 timm 主干网络
|
|
|
|
|
model_name='efficientnet_b1', # 使用 TIMM 中的 efficientnet_b1
|
2022-10-30 15:49:13 +08:00
|
|
|
|
features_only=True,
|
|
|
|
|
pretrained=True,
|
|
|
|
|
out_indices=(2, 3, 4)),
|
|
|
|
|
neck=dict(
|
|
|
|
|
type='YOLOv5PAFPN',
|
|
|
|
|
deepen_factor=deepen_factor,
|
|
|
|
|
widen_factor=widen_factor,
|
2022-11-10 10:03:04 +08:00
|
|
|
|
in_channels=channels, # 注意:EfficientNet-B1 输出的3个通道是 [40, 112, 320],和原先的 yolov5-s neck 不匹配,需要更改
|
2022-10-30 15:49:13 +08:00
|
|
|
|
out_channels=channels),
|
|
|
|
|
bbox_head=dict(
|
|
|
|
|
type='YOLOv5Head',
|
|
|
|
|
head_module=dict(
|
|
|
|
|
type='YOLOv5HeadModule',
|
2022-11-10 10:03:04 +08:00
|
|
|
|
in_channels=channels, # head 部分输入通道也要做相应更改
|
2022-10-30 15:49:13 +08:00
|
|
|
|
widen_factor=widen_factor))
|
|
|
|
|
)
|
|
|
|
|
```
|