[CodeCamp] Add module_combination doc ()

* [CodeCamp] Add module_combination doc
 * fix init_weights not match num_base_priors

 * add module_combination about yolov5 using other model loss

* Update module_combination.md

* [CodeCamp] Add module_combination doc
* update

* [CodeCamp] Add module_combination doc
pull/386/head
WANG Tengfei 2022-12-17 10:37:53 +08:00 committed by GitHub
parent 14d6922b99
commit 2d5485f713
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 65 additions and 1 deletions
docs/zh_cn/advanced_guides
mmyolo/models/dense_heads

View File

@ -107,3 +107,67 @@ model = dict(
1. 在本教程中损失函数的替换是运行不报错的,但无法保证性能一定会上升。
2. 本次损失函数的替换都是以 YOLOv5 算法作为例子的,但是 MMYOLO 下的多个算法,如 YOLOv6YOLOX 等算法都可以按照上述的例子进行替换。
## model 和 loss 组合替换
在 MMYOLO 中model 即网络本身和 loss 是解耦的,用户可以简单的通过修改配置文件中 model 和 loss 来组合不同模块。下面给出两个具体例子。
(1) YOLOv5 model 组合 YOLOv7 loss配置文件如下
```python
_base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'
model = dict(
bbox_head=dict(
_delete_=True,
type='YOLOv7Head',
head_module=dict(
type='YOLOv5HeadModule',
num_classes=80,
in_channels=[256, 512, 1024],
widen_factor=0.5,
featmap_strides=[8, 16, 32],
num_base_priors=3)))
```
(2) RTMDet model 组合 YOLOv6 loss配置文件如下
```python
_base_ = './rtmdet_l_syncbn_8xb32-300e_coco.py'
model = dict(
bbox_head=dict(
_delete_=True,
type='YOLOv6Head',
head_module=dict(
type='RTMDetSepBNHeadModule',
num_classes=80,
in_channels=256,
stacked_convs=2,
feat_channels=256,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='SiLU', inplace=True),
share_conv=True,
pred_kernel_size=1,
featmap_strides=[8, 16, 32]),
loss_bbox=dict(
type='IoULoss',
iou_mode='giou',
bbox_format='xyxy',
reduction='mean',
loss_weight=2.5,
return_iou=False)),
train_cfg=dict(
_delete_=True,
initial_epoch=4,
initial_assigner=dict(
type='BatchATSSAssigner',
num_classes=80,
topk=9,
iou_calculator=dict(type='mmdet.BboxOverlaps2D')),
assigner=dict(
type='BatchTaskAlignedAssigner',
num_classes=80,
topk=13,
alpha=1,
beta=6)
))
```

View File

@ -80,7 +80,7 @@ class YOLOv5HeadModule(BaseModule):
"""Initialize the bias of YOLOv5 head."""
super().init_weights()
for mi, s in zip(self.convs_pred, self.featmap_strides): # from
b = mi.bias.data.view(3, -1)
b = mi.bias.data.view(self.num_base_priors, -1)
# obj (8 objects per 640 image)
b.data[:, 4] += math.log(8 / (640 / s)**2)
b.data[:, 5:] += math.log(0.6 / (self.num_classes - 0.999999))