diff --git a/configs/razor/subnets/README.md b/configs/razor/subnets/README.md
index ad7a716b..093dedd7 100644
--- a/configs/razor/subnets/README.md
+++ b/configs/razor/subnets/README.md
@@ -62,18 +62,18 @@ CUDA_VISIBLE_DEVICES=0 PORT=29500 ./tools/dist_test.sh configs/razor/subnets/yol
 
 Here we provide the baseline version of YOLO Series with NAS backbone.
 
-|           Model            | size | box AP |  Params(M)   | FLOPs(G) |                                                                   Config                                                                   |                                                                                Download                                                                                 |
-| :------------------------: | :--: | :----: | :----------: | :------: | :----------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
-|          yolov5-s          | 640  |  37.7  |    7.235     |  8.265   |            [config](https://github.com/open-mmlab/mmyolo/blob/main/configs/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py)             | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco/yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth) |
-| yolov5_s_spos_shufflenetv2 | 640  |  37.9  | 7.04(-2.7%)  |   7.03   |     [config](https://github.com/open-mmlab/mmyolo/tree/dev/configs/razor/subnets/yolov5_s_spos_shufflenetv2_syncbn_8xb16-300e_coco.py)     |              [model](https://download.openmmlab.com/mmrazor/v1/spos/yolov5/yolov5_s_spos_shufflenetv2_syncbn_8xb16-300e_coco_20230109_155302-777fd6f1.pth)              |
-|          yolov6-s          | 640  |  44.0  |    18.869    |  24.253  |              [config](https://github.com/open-mmlab/mmyolo/blob/main/configs/yolov6/yolov6_s_syncbn_fast_8xb32-400e_coco.py)               |     [model](https://download.openmmlab.com/mmyolo/v0/yolov6/yolov6_s_syncbn_fast_8xb32-400e_coco/yolov6_s_syncbn_fast_8xb32-400e_coco_20221102_203035-932e1d91.pth)     |
-|  yolov6_l_attentivenas_a6  | 640  |  44.5  | 18.38(-2.6%) |   8.49   | [config](https://github.com/open-mmlab/mmyolo/tree/dev/configs/razor/subnets/yolov6_l_attentivenas_a6_d12_syncbn_fast_16xb16-300e_coco.py) |      [model](https://download.openmmlab.com/mmrazor/v1/attentivenas/yolov6/yolov6_l_attentivenas_a6_d12_syncbn_fast_16xb16-300e_coco_20230108_174944-4970f0b7.pth)      |
-|        RTMDet-tiny         | 640  |  41.0  |     4.8      |   8.1    |                                            [config](./rtmdet_l_syncbn_fast_8xb32-300e_coco.py)                                             |  [model](https://download.openmmlab.com/mmyolo/v0/rtmdet/rtmdet_tiny_syncbn_fast_8xb32-300e_coco/rtmdet_tiny_syncbn_fast_8xb32-300e_coco_20230102_140117-dbb1dc83.pth)  |
-|   rtmdet_tiny_ofa_lat31    | 960  |  41.1  | 3.91(-18.5%) |   6.09   |       [config](https://github.com/open-mmlab/mmyolo/tree/dev/configs/razor/subnets/rtmdet_tiny_ofa_lat31_syncbn_16xb16-300e_coco.py)       |                [model](https://download.openmmlab.com/mmrazor/v1/ofa/rtmdet/rtmdet_tiny_ofa_lat31_syncbn_16xb16-300e_coco_20230108_222141-24ff87dex.pth)                |
+|           Model            | size | box AP |  Params(M)   | FLOPs(G) |                                                                  Config                                                                   |                                                                                                                                                                   Download                                                                                                                                                                   |
+| :------------------------: | :--: | :----: | :----------: | :------: | :---------------------------------------------------------------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
+|          yolov5-s          | 640  |  37.7  |    7.235     |  8.265   |            [config](https://github.com/open-mmlab/mmyolo/blob/main/configs/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py)            | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco/yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco/yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700.log.json) |
+| yolov5_s_spos_shufflenetv2 | 640  |  38.0  | 7.04(-2.7%)  |   7.03   |    [config](https://github.com/open-mmlab/mmyolo/tree/dev/configs/razor/subnets/yolov5_s_spos_shufflenetv2_syncbn_8xb16-300e_coco.py)     |                                                                                          [model](https://download.openmmlab.com/mmrazor/v1/yolo_nas_backbone/yolov5_s_spos_shufflenetv2_syncbn_8xb16-300e_coco_20230211_220635-578be9a9.pth) \| log                                                                                          |
+|          yolov6-s          | 640  |  44.0  |    18.869    |  24.253  |              [config](https://github.com/open-mmlab/mmyolo/blob/main/configs/yolov6/yolov6_s_syncbn_fast_8xb32-400e_coco.py)              |         [model](https://download.openmmlab.com/mmyolo/v0/yolov6/yolov6_s_syncbn_fast_8xb32-400e_coco/yolov6_s_syncbn_fast_8xb32-400e_coco_20221102_203035-932e1d91.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov6/yolov6_s_syncbn_fast_8xb32-400e_coco/yolov6_s_syncbn_fast_8xb32-400e_coco_20221102_203035.log.json)         |
+|  yolov6_l_attentivenas_a6  | 640  |  45.3  | 18.38(-2.6%) |   8.49   | [config](https://github.com/open-mmlab/mmyolo/tree/dev/configs/razor/subnets/yolov6_l_attentivenas_a6_d12_syncbn_fast_8xb32-300e_coco.py) |                                                                                      [model](https://download.openmmlab.com/mmrazor/v1/yolo_nas_backbone/yolov6_l_attentivenas_a6_d12_syncbn_fast_8xb32-300e_coco_20230211_222409-dcc72668.pth) \| log                                                                                       |
+|        RTMDet-tiny         | 640  |  41.0  |     4.8      |   8.1    |                                            [config](./rtmdet_l_syncbn_fast_8xb32-300e_coco.py)                                            |   [model](https://download.openmmlab.com/mmyolo/v0/rtmdet/rtmdet_tiny_syncbn_fast_8xb32-300e_coco/rtmdet_tiny_syncbn_fast_8xb32-300e_coco_20230102_140117-dbb1dc83.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/rtmdet/rtmdet_tiny_syncbn_fast_8xb32-300e_coco/rtmdet_tiny_syncbn_fast_8xb32-300e_coco_20230102_140117.log.json)   |
+|   rtmdet_tiny_ofa_lat31    | 960  |  41.3  | 3.91(-18.5%) |   6.09   |      [config](https://github.com/open-mmlab/mmyolo/tree/dev/configs/razor/subnets/rtmdet_tiny_ofa_lat31_syncbn_16xb16-300e_coco.py)       |                                                                                            [model](https://download.openmmlab.com/mmrazor/v1/yolo_nas_backbone/rtmdet_tiny_ofa_lat31_syncbn_16xb16-300e_coco_20230214_210623-449bb2a0.pth) \| log                                                                                            |
 
 **Note**:
 
 1. For fair comparison, the training configuration is consistent with the original configuration and results in an improvement of about 0.2-0.5% AP.
-2. `yolov5_s_spos_shufflenetv2` achieves 37.9% AP with only 7.042M parameters, directly instead of the backbone, and outperforms `yolov5_s` with a similar size by more than 0.2% AP.
+2. `yolov5_s_spos_shufflenetv2` achieves 38.0% AP with only 7.042M parameters, directly instead of the backbone, and outperforms `yolov5_s` with a similar size by more than 0.3% AP.
 3. With the efficient backbone of `yolov6_l_attentivenas_a6`, the input channels of `YOLOv6RepPAFPN` are reduced. Meanwhile, modify the **deepen_factor** and the neck is made deeper to restore the AP.
-4. with the `rtmdet_tiny_ofa_lat31` backbone with only 3.315M parameters and 3.634G flops, we can modify the input resolution to 960, with a similar model size compared to `rtmdet_tiny` and exceeds `rtmdet_tiny` by 0.1% AP, reducing the size of the whole model to 3.91 MB.
+4. with the `rtmdet_tiny_ofa_lat31` backbone with only 3.315M parameters and 3.634G flops, we can modify the input resolution to 960, with a similar model size compared to `rtmdet_tiny` and exceeds `rtmdet_tiny` by 0.4% AP, reducing the size of the whole model to 3.91 MB.
diff --git a/configs/razor/subnets/rtmdet_tiny_ofa_lat31_syncbn_16xb16-300e_coco.py b/configs/razor/subnets/rtmdet_tiny_ofa_lat31_syncbn_16xb16-300e_coco.py
index 82d696be..04d8c2d8 100644
--- a/configs/razor/subnets/rtmdet_tiny_ofa_lat31_syncbn_16xb16-300e_coco.py
+++ b/configs/razor/subnets/rtmdet_tiny_ofa_lat31_syncbn_16xb16-300e_coco.py
@@ -4,17 +4,13 @@ _base_ = [
 ]
 
 checkpoint_file = 'https://download.openmmlab.com/mmrazor/v1/ofa/ofa_mobilenet_subnet_8xb256_in1k_note8_lat%4031ms_top1%4072.8_finetune%4025.py_20221214_0939-981a8b2a.pth'  # noqa
-fix_subnet = 'https://download.openmmlab.com/mmrazor/v1/ofa/rtmdet/OFA_SUBNET_NOTE8_LAT31.yaml'  # noqa
+fix_subnet = 'https://download.openmmlab.com/mmrazor/v1/yolo_nas_backbone/OFA_SUBNET_NOTE8_LAT31.yaml'  # noqa
 deepen_factor = 0.167
 widen_factor = 1.0
 channels = [40, 112, 160]
 train_batch_size_per_gpu = 16
 img_scale = (960, 960)
 
-_base_.base_lr = 0.002
-_base_.optim_wrapper.optimizer.lr = 0.002
-_base_.param_scheduler[1].eta_min = 0.002 * 0.05
-
 _base_.nas_backbone.out_indices = (2, 4, 5)
 _base_.nas_backbone.conv_cfg = dict(type='mmrazor.OFAConv2d')
 _base_.nas_backbone.init_cfg = dict(
@@ -36,6 +32,14 @@ _base_.model.bbox_head.head_module.in_channels = channels[0]
 _base_.model.bbox_head.head_module.feat_channels = channels[0]
 _base_.model.bbox_head.head_module.widen_factor = widen_factor
 
+_base_.model.test_cfg = dict(
+    multi_label=True,
+    nms_pre=1000,
+    min_bbox_size=0,
+    score_thr=0.05,
+    nms=dict(type='nms', iou_threshold=0.6),
+    max_per_img=100)
+
 train_pipeline = [
     dict(type='LoadImageFromFile', file_client_args=_base_.file_client_args),
     dict(type='LoadAnnotations', with_bbox=True),
@@ -43,12 +47,12 @@ train_pipeline = [
         type='Mosaic',
         img_scale=img_scale,
         use_cached=True,
-        max_cached_images=40,
+        max_cached_images=20,
+        random_pop=False,
         pad_val=114.0),
     dict(
         type='mmdet.RandomResize',
-        # img_scale is (width, height)
-        scale=(img_scale[0] * 2, img_scale[1] * 2),
+        scale=(1280, 1280),
         ratio_range=(0.5, 2.0),  # note
         resize_type='mmdet.Resize',
         keep_ratio=True),
@@ -56,7 +60,15 @@ train_pipeline = [
     dict(type='mmdet.YOLOXHSVRandomAug'),
     dict(type='mmdet.RandomFlip', prob=0.5),
     dict(type='mmdet.Pad', size=img_scale, pad_val=dict(img=(114, 114, 114))),
-    dict(type='YOLOv5MixUp', use_cached=True, max_cached_images=20),
+    dict(
+        type='YOLOXMixUp',
+        img_scale=(960, 960),
+        ratio_range=(1.0, 1.0),
+        max_cached_images=10,
+        use_cached=True,
+        random_pop=False,
+        pad_val=(114, 114, 114),
+        prob=0.5),
     dict(type='mmdet.PackDetInputs')
 ]
 
@@ -81,23 +93,17 @@ train_dataloader = dict(
 
 test_pipeline = [
     dict(type='LoadImageFromFile', file_client_args=_base_.file_client_args),
-    dict(type='YOLOv5KeepRatioResize', scale=img_scale),
-    dict(
-        type='LetterResize',
-        scale=img_scale,
-        allow_scale_up=False,
-        pad_val=dict(img=114)),
+    dict(type='mmdet.Resize', scale=(960, 960), keep_ratio=True),
+    dict(type='mmdet.Pad', size=(960, 960), pad_val=dict(img=(114, 114, 114))),
     dict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'),
     dict(
         type='mmdet.PackDetInputs',
         meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
-                   'scale_factor', 'pad_param'))
+                   'scale_factor'))
 ]
 
-batch_shapes_cfg = dict(img_size=img_scale[0])
-
 val_dataloader = dict(
-    dataset=dict(pipeline=test_pipeline, batch_shapes_cfg=batch_shapes_cfg))
+    dataset=dict(pipeline=test_pipeline, batch_shapes_cfg=None))
 
 test_dataloader = val_dataloader
 
diff --git a/configs/razor/subnets/yolov5_s_spos_shufflenetv2_syncbn_8xb16-300e_coco.py b/configs/razor/subnets/yolov5_s_spos_shufflenetv2_syncbn_8xb16-300e_coco.py
index 39884047..beb4941c 100644
--- a/configs/razor/subnets/yolov5_s_spos_shufflenetv2_syncbn_8xb16-300e_coco.py
+++ b/configs/razor/subnets/yolov5_s_spos_shufflenetv2_syncbn_8xb16-300e_coco.py
@@ -5,7 +5,6 @@ _base_ = [
 
 checkpoint_file = 'https://download.openmmlab.com/mmrazor/v1/spos/spos_shufflenetv2_subnet_8xb128_in1k_flops_0.33M_acc_73.87_20211222-1f0a0b4d_v3.pth'  # noqa
 fix_subnet = 'https://download.openmmlab.com/mmrazor/v1/spos/spos_shufflenetv2_subnet_8xb128_in1k_flops_0.33M_acc_73.87_20211222-1f0a0b4d_subnet_cfg_v3.yaml'  # noqa
-
 widen_factor = 1.0
 channels = [160, 320, 640]
 
diff --git a/configs/razor/subnets/yolov6_l_attentivenas_a6_d12_syncbn_fast_16xb16-300e_coco.py b/configs/razor/subnets/yolov6_l_attentivenas_a6_d12_syncbn_fast_8xb32-300e_coco.py
similarity index 100%
rename from configs/razor/subnets/yolov6_l_attentivenas_a6_d12_syncbn_fast_16xb16-300e_coco.py
rename to configs/razor/subnets/yolov6_l_attentivenas_a6_d12_syncbn_fast_8xb32-300e_coco.py
diff --git a/tests/test_downstream/test_mmrazor.py b/tests/test_downstream/test_mmrazor.py
index ebf6806e..dc3090d2 100644
--- a/tests/test_downstream/test_mmrazor.py
+++ b/tests/test_downstream/test_mmrazor.py
@@ -11,9 +11,9 @@ from mmyolo.testing import get_detector_cfg
     'razor/subnets/'
     'yolov5_s_spos_shufflenetv2_syncbn_8xb16-300e_coco.py', 'razor/subnets/'
     'rtmdet_tiny_ofa_lat31_syncbn_16xb16-300e_coco.py', 'razor/subnets/'
-    'yolov6_l_attentivenas_a6_d12_syncbn_fast_16xb16-300e_coco.py'
+    'yolov6_l_attentivenas_a6_d12_syncbn_fast_8xb32-300e_coco.py'
 ])
-def test_razor_backbone_forward(cfg_file):
+def test_razor_backbone_init(cfg_file):
     model = get_detector_cfg(cfg_file)
     model_cfg = copy.deepcopy(model.backbone)
     from mmrazor.registry import MODELS