mirror of https://github.com/open-mmlab/mmyolo.git
[Improve] Beautify the YOLOX configuration (#529)
* Beautify the YOLOX configuration * fix checks * Update configs/yolox/yolox_s_fast_8xb8-300e_coco.py Co-authored-by: HinGwenWoong <peterhuang0323@qq.com> * fix letter case problem * beauty yolox configs except yolox_s's config * fix lint * Update configs/yolox/yolox_s_fast_8xb8-300e_coco.py Co-authored-by: Haian Huang(深度眸) <1286304229@qq.com> * fix yolox_s yolox_tiny * fix tiny * fix tiny * simple tiny --------- Co-authored-by: HinGwenWoong <peterhuang0323@qq.com> Co-authored-by: Haian Huang(深度眸) <1286304229@qq.com>pull/547/head
parent
4e8bf17c90
commit
3a6899e232
|
@ -1,8 +1,10 @@
|
|||
_base_ = './yolox_s_fast_8xb8-300e_coco.py'
|
||||
|
||||
# ========================modified parameters======================
|
||||
deepen_factor = 1.0
|
||||
widen_factor = 1.0
|
||||
|
||||
# =======================Unmodified in most cases==================
|
||||
# model settings
|
||||
model = dict(
|
||||
backbone=dict(deepen_factor=deepen_factor, widen_factor=widen_factor),
|
||||
|
|
|
@ -1,8 +1,10 @@
|
|||
_base_ = './yolox_s_fast_8xb8-300e_coco.py'
|
||||
|
||||
# ========================modified parameters======================
|
||||
deepen_factor = 0.67
|
||||
widen_factor = 0.75
|
||||
|
||||
# =======================Unmodified in most cases==================
|
||||
# model settings
|
||||
model = dict(
|
||||
backbone=dict(deepen_factor=deepen_factor, widen_factor=widen_factor),
|
||||
|
|
|
@ -1,9 +1,11 @@
|
|||
_base_ = './yolox_tiny_fast_8xb8-300e_coco.py'
|
||||
|
||||
# ========================modified parameters======================
|
||||
deepen_factor = 0.33
|
||||
widen_factor = 0.25
|
||||
use_depthwise = True
|
||||
|
||||
# =======================Unmodified in most cases==================
|
||||
# model settings
|
||||
model = dict(
|
||||
backbone=dict(
|
||||
|
|
|
@ -1,21 +1,64 @@
|
|||
_base_ = '../_base_/default_runtime.py'
|
||||
|
||||
data_root = 'data/coco/'
|
||||
dataset_type = 'YOLOv5CocoDataset'
|
||||
# ========================Frequently modified parameters======================
|
||||
# -----data related-----
|
||||
data_root = 'data/coco/' # Root path of data
|
||||
# path of train annotation file
|
||||
train_ann_file = 'annotations/instances_train2017.json'
|
||||
train_data_prefix = 'train2017/' # Prefix of train image path
|
||||
# path of val annotation file
|
||||
val_ann_file = 'annotations/instances_val2017.json'
|
||||
val_data_prefix = 'val2017/' # Prefix of train image path
|
||||
|
||||
img_scale = (640, 640) # width, height
|
||||
deepen_factor = 0.33
|
||||
widen_factor = 0.5
|
||||
|
||||
save_epoch_intervals = 10
|
||||
num_classes = 80 # Number of classes for classification
|
||||
# Batch size of a single GPU during training
|
||||
train_batch_size_per_gpu = 8
|
||||
# Worker to pre-fetch data for each single GPU during tarining
|
||||
train_num_workers = 8
|
||||
# Presistent_workers must be False if num_workers is 0
|
||||
persistent_workers = True
|
||||
|
||||
# -----train val related-----
|
||||
# Base learning rate for optim_wrapper. Corresponding to 8xb16=64 bs
|
||||
base_lr = 0.01
|
||||
max_epochs = 300 # Maximum training epochs
|
||||
|
||||
model_test_cfg = dict(
|
||||
yolox_style=True, # better
|
||||
# The config of multi-label for multi-class prediction
|
||||
multi_label=True, # 40.5 -> 40.7
|
||||
score_thr=0.001, # Threshold to filter out boxes
|
||||
max_per_img=300, # Max number of detections of each image
|
||||
nms=dict(type='nms', iou_threshold=0.65)) # NMS type and threshold
|
||||
|
||||
# ========================Possible modified parameters========================
|
||||
# -----data related-----
|
||||
img_scale = (640, 640) # width, height
|
||||
# Dataset type, this will be used to define the dataset
|
||||
dataset_type = 'YOLOv5CocoDataset'
|
||||
# Batch size of a single GPU during validation
|
||||
val_batch_size_per_gpu = 1
|
||||
# Worker to pre-fetch data for each single GPU during validation
|
||||
val_num_workers = 2
|
||||
|
||||
max_epochs = 300
|
||||
num_last_epochs = 15
|
||||
# -----model related-----
|
||||
# The scaling factor that controls the depth of the network structure
|
||||
deepen_factor = 0.33
|
||||
# The scaling factor that controls the width of the network structure
|
||||
widen_factor = 0.5
|
||||
norm_cfg = dict(type='BN', momentum=0.03, eps=0.001)
|
||||
|
||||
# -----train val related-----
|
||||
weight_decay = 0.0005
|
||||
num_last_epochs = 15
|
||||
random_affine_scaling_ratio_range = (0.1, 2)
|
||||
mixup_ratio_range = (0.8, 1.6)
|
||||
# Save model checkpoint and validation intervals
|
||||
save_epoch_intervals = 10
|
||||
# The maximum checkpoints to keep.
|
||||
max_keep_ckpts = 3
|
||||
|
||||
# ===============================Unmodified in most cases====================
|
||||
# model settings
|
||||
model = dict(
|
||||
type='YOLODetector',
|
||||
|
@ -44,7 +87,7 @@ model = dict(
|
|||
widen_factor=widen_factor,
|
||||
out_indices=(2, 3, 4),
|
||||
spp_kernal_sizes=(5, 9, 13),
|
||||
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
|
||||
norm_cfg=norm_cfg,
|
||||
act_cfg=dict(type='SiLU', inplace=True),
|
||||
),
|
||||
neck=dict(
|
||||
|
@ -53,20 +96,20 @@ model = dict(
|
|||
widen_factor=widen_factor,
|
||||
in_channels=[256, 512, 1024],
|
||||
out_channels=256,
|
||||
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
|
||||
norm_cfg=norm_cfg,
|
||||
act_cfg=dict(type='SiLU', inplace=True)),
|
||||
bbox_head=dict(
|
||||
type='YOLOXHead',
|
||||
head_module=dict(
|
||||
type='YOLOXHeadModule',
|
||||
num_classes=80,
|
||||
num_classes=num_classes,
|
||||
in_channels=256,
|
||||
feat_channels=256,
|
||||
widen_factor=widen_factor,
|
||||
stacked_convs=2,
|
||||
featmap_strides=(8, 16, 32),
|
||||
use_depthwise=False,
|
||||
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
|
||||
norm_cfg=norm_cfg,
|
||||
act_cfg=dict(type='SiLU', inplace=True),
|
||||
),
|
||||
loss_cls=dict(
|
||||
|
@ -92,12 +135,7 @@ model = dict(
|
|||
type='mmdet.SimOTAAssigner',
|
||||
center_radius=2.5,
|
||||
iou_calculator=dict(type='mmdet.BboxOverlaps2D'))),
|
||||
test_cfg=dict(
|
||||
yolox_style=True, # better
|
||||
multi_label=True, # 40.5 -> 40.7
|
||||
score_thr=0.001,
|
||||
max_per_img=300,
|
||||
nms=dict(type='nms', iou_threshold=0.65)))
|
||||
test_cfg=model_test_cfg)
|
||||
|
||||
pre_transform = [
|
||||
dict(type='LoadImageFromFile', file_client_args=_base_.file_client_args),
|
||||
|
@ -113,13 +151,13 @@ train_pipeline_stage1 = [
|
|||
pre_transform=pre_transform),
|
||||
dict(
|
||||
type='mmdet.RandomAffine',
|
||||
scaling_ratio_range=(0.1, 2),
|
||||
scaling_ratio_range=random_affine_scaling_ratio_range,
|
||||
# img_scale is (width, height)
|
||||
border=(-img_scale[0] // 2, -img_scale[1] // 2)),
|
||||
dict(
|
||||
type='YOLOXMixUp',
|
||||
img_scale=img_scale,
|
||||
ratio_range=(0.8, 1.6),
|
||||
ratio_range=mixup_ratio_range,
|
||||
pad_val=114.0,
|
||||
pre_transform=pre_transform),
|
||||
dict(type='mmdet.YOLOXHSVRandomAug'),
|
||||
|
@ -155,15 +193,15 @@ train_pipeline_stage2 = [
|
|||
train_dataloader = dict(
|
||||
batch_size=train_batch_size_per_gpu,
|
||||
num_workers=train_num_workers,
|
||||
persistent_workers=True,
|
||||
persistent_workers=persistent_workers,
|
||||
pin_memory=True,
|
||||
collate_fn=dict(type='yolov5_collate'),
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='annotations/instances_train2017.json',
|
||||
data_prefix=dict(img='train2017/'),
|
||||
ann_file=train_ann_file,
|
||||
data_prefix=dict(img=train_data_prefix),
|
||||
filter_cfg=dict(filter_empty_gt=False, min_size=32),
|
||||
pipeline=train_pipeline_stage1))
|
||||
|
||||
|
@ -184,15 +222,15 @@ test_pipeline = [
|
|||
val_dataloader = dict(
|
||||
batch_size=val_batch_size_per_gpu,
|
||||
num_workers=val_num_workers,
|
||||
persistent_workers=True,
|
||||
persistent_workers=persistent_workers,
|
||||
pin_memory=True,
|
||||
drop_last=False,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='annotations/instances_val2017.json',
|
||||
data_prefix=dict(img='val2017/'),
|
||||
ann_file=val_ann_file,
|
||||
data_prefix=dict(img=val_data_prefix),
|
||||
test_mode=True,
|
||||
pipeline=test_pipeline))
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -201,18 +239,20 @@ test_dataloader = val_dataloader
|
|||
val_evaluator = dict(
|
||||
type='mmdet.CocoMetric',
|
||||
proposal_nums=(100, 1, 10),
|
||||
ann_file=data_root + 'annotations/instances_val2017.json',
|
||||
ann_file=data_root + val_ann_file,
|
||||
metric='bbox')
|
||||
|
||||
test_evaluator = val_evaluator
|
||||
|
||||
# optimizer
|
||||
# default 8 gpu
|
||||
base_lr = 0.01
|
||||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
optimizer=dict(
|
||||
type='SGD', lr=base_lr, momentum=0.9, weight_decay=5e-4,
|
||||
type='SGD',
|
||||
lr=base_lr,
|
||||
momentum=0.9,
|
||||
weight_decay=weight_decay,
|
||||
nesterov=True),
|
||||
paramwise_cfg=dict(norm_decay_mult=0., bias_decay_mult=0.))
|
||||
|
||||
|
@ -248,7 +288,10 @@ param_scheduler = [
|
|||
|
||||
default_hooks = dict(
|
||||
checkpoint=dict(
|
||||
type='CheckpointHook', interval=1, max_keep_ckpts=3, save_best='auto'))
|
||||
type='CheckpointHook',
|
||||
interval=save_epoch_intervals,
|
||||
max_keep_ckpts=max_keep_ckpts,
|
||||
save_best='auto'))
|
||||
|
||||
custom_hooks = [
|
||||
dict(
|
||||
|
|
|
@ -1,14 +1,20 @@
|
|||
_base_ = './yolox_s_fast_8xb8-300e_coco.py'
|
||||
|
||||
# ========================modified parameters======================
|
||||
deepen_factor = 0.33
|
||||
widen_factor = 0.375
|
||||
|
||||
img_scale = _base_.img_scale
|
||||
pre_transform = _base_.pre_transform
|
||||
scaling_ratio_range = (0.5, 1.5)
|
||||
|
||||
# =======================Unmodified in most cases==================
|
||||
# model settings
|
||||
model = dict(
|
||||
data_preprocessor=dict(batch_augments=[
|
||||
dict(
|
||||
type='mmdet.BatchSyncRandomResize',
|
||||
random_size_range=(320, 640), # note
|
||||
type='YOLOXBatchSyncRandomResize',
|
||||
random_size_range=(320, 640),
|
||||
size_divisor=32,
|
||||
interval=10)
|
||||
]),
|
||||
|
@ -16,9 +22,6 @@ model = dict(
|
|||
neck=dict(deepen_factor=deepen_factor, widen_factor=widen_factor),
|
||||
bbox_head=dict(head_module=dict(widen_factor=widen_factor)))
|
||||
|
||||
img_scale = _base_.img_scale
|
||||
pre_transform = _base_.pre_transform
|
||||
|
||||
train_pipeline_stage1 = [
|
||||
*pre_transform,
|
||||
dict(
|
||||
|
@ -28,7 +31,7 @@ train_pipeline_stage1 = [
|
|||
pre_transform=pre_transform),
|
||||
dict(
|
||||
type='mmdet.RandomAffine',
|
||||
scaling_ratio_range=(0.5, 1.5), # note
|
||||
scaling_ratio_range=scaling_ratio_range, # note
|
||||
# img_scale is (width, height)
|
||||
border=(-img_scale[0] // 2, -img_scale[1] // 2)),
|
||||
dict(type='mmdet.YOLOXHSVRandomAug'),
|
||||
|
|
|
@ -1,8 +1,10 @@
|
|||
_base_ = './yolox_s_fast_8xb8-300e_coco.py'
|
||||
|
||||
# ========================modified parameters======================
|
||||
deepen_factor = 1.33
|
||||
widen_factor = 1.25
|
||||
|
||||
# =======================Unmodified in most cases==================
|
||||
# model settings
|
||||
model = dict(
|
||||
backbone=dict(deepen_factor=deepen_factor, widen_factor=widen_factor),
|
||||
|
|
Loading…
Reference in New Issue