diff --git a/docs/en/get_started.md b/docs/en/get_started.md
index e2ac7bdc..20000894 100644
--- a/docs/en/get_started.md
+++ b/docs/en/get_started.md
@@ -223,7 +223,7 @@ docker build -t mmyolo docker/
Run it with
```shell
-DATA_DIR=/path/to/your/dataset
+export DATA_DIR=/path/to/your/dataset
docker run --gpus all --shm-size=8g -it -v ${DATA_DIR}:/mmyolo/data mmyolo
```
diff --git a/docs/en/overview.md b/docs/en/overview.md
index 8c427b76..69e81c0e 100644
--- a/docs/en/overview.md
+++ b/docs/en/overview.md
@@ -4,7 +4,9 @@ This chapter introduces you to the overall framework of MMYOLO and provides link
## What is MMYOLO
-
+
+

+
MMYOLO is a YOLO series algorithm toolbox, which currently implements only the target detection task and will subsequently support various tasks such as instance segmentation, panoramic segmentation and key point detection. It includes a rich set of target detection algorithms and related components and modules, and the following is its overall framework.
@@ -29,7 +31,7 @@ MMYOLO file structure is identical to the MMDetection. To allow full reuse of th
The detailed instruction of MMYOLO is as following
-1. Look up install instruction through [start your first step](get_started.md)
+1. Look up install instruction through [start your first step](get_started.md).
2. Basic method of how to use MMYOLO can be found here:
diff --git a/docs/en/user_guides/useful_tools.md b/docs/en/user_guides/useful_tools.md
index ac2f92f6..9cf8d80a 100644
--- a/docs/en/user_guides/useful_tools.md
+++ b/docs/en/user_guides/useful_tools.md
@@ -1 +1,185 @@
# Useful tools
+
+We provide lots of useful tools under the `tools/` directory. In addition, you can also quickly run other open source libraries of OpenMMLab through MIM.
+
+Take MMDetection as an example. If you want to use [print_config.py](https://github.com/open-mmlab/mmdetection/blob/3.x/tools/misc/print_config.py), you can directly use the following commands without copying the source code to the MMYOLO library.
+
+```shell
+mim run mmdet print_config [CONFIG]
+```
+
+**Note**: The MMDetection library must be installed through the MIM before the above command can succeed.
+
+## Visualization
+
+### Visualize COCO labels
+
+`tools/analysis_tools/browse_coco_json.py` is a script that can visualization to display the COCO label in the picture.
+
+```shell
+python tools/analysis_tools/browse_coco_json.py ${DATA_ROOT} \
+ [--ann_file ${ANN_FILE}] \
+ [--img_dir ${IMG_DIR}] \
+ [--wait-time ${WAIT_TIME}] \
+ [--disp-all] [--category-names CATEGORY_NAMES [CATEGORY_NAMES ...]] \
+ [--shuffle]
+```
+
+E.g:
+
+1. Visualize all categories of `COCO` and display all types of annotations such as `bbox` and `mask`:
+
+```shell
+python tools/analysis_tools/browse_coco_json.py './data/coco/' \
+ --ann_file 'annotations/instances_train2017.json' \
+ --img_dir 'train2017' \
+ --disp-all
+```
+
+2. Visualize all categories of `COCO`, and display only the `bbox` type labels, and shuffle the image to show:
+
+```shell
+python tools/analysis_tools/browse_coco_json.py './data/coco/' \
+ --ann_file 'annotations/instances_train2017.json' \
+ --img_dir 'train2017' \
+ --shuffle
+```
+
+3. Only visualize the `bicycle` and `person` categories of `COCO` and only the `bbox` type labels are displayed:
+
+```shell
+python tools/analysis_tools/browse_coco_json.py './data/coco/' \
+ --ann_file 'annotations/instances_train2017.json' \
+ --img_dir 'train2017' \
+ --category-names 'bicycle' 'person'
+```
+
+4. Visualize all categories of `COCO`, and display all types of label such as `bbox`, `mask`, and shuffle the image to show:
+
+```shell
+python tools/analysis_tools/browse_coco_json.py './data/coco/' \
+ --ann_file 'annotations/instances_train2017.json' \
+ --img_dir 'train2017' \
+ --disp-all \
+ --shuffle
+```
+
+### Visualize Datasets
+
+`tools/analysis_tools/browse_dataset.py` helps the user to browse a detection dataset (both images and bounding box annotations) visually, or save the image to a designated directory.
+
+```shell
+python tools/analysis_tools/browse_dataset.py ${CONFIG} \
+ [-h] \
+ [--output-dir ${OUTPUT_DIR}] \
+ [--not-show] \
+ [--show-interval ${SHOW_INTERVAL}]
+```
+
+E,g:
+
+1. Use `config` file `configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py` to visualize the picture. The picture will pop up directly and be saved to the directory `work dir/browse_ dataset` at the same time:
+
+```shell
+python tools/analysis_tools/browse_dataset.py 'configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py' \
+ --output-dir 'work-dir/browse_dataset'
+```
+
+2. Use `config` file `configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py` to visualize the picture. The picture will pop up and display directly. Each picture lasts for `10` seconds. At the same time, it will be saved to the directory `work dir/browse_ dataset`:
+
+```shell
+python tools/analysis_tools/browse_dataset.py 'configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py' \
+ --output-dir 'work-dir/browse_dataset' \
+ --show-interval 10
+```
+
+3. Use `config` file `configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py` to visualize the picture. The picture will pop up and display directly. Each picture lasts for `10` seconds and the picture will not be saved:
+
+```shell
+python tools/analysis_tools/browse_dataset.py 'configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py' \
+ --show-interval 10
+```
+
+4. Use `config` file `configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py` to visualize the picture. The picture will not pop up directly, but only saved to the directory `work dir/browse_ dataset`:
+
+```shell
+python tools/analysis_tools/browse_dataset.py 'configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py' \
+ --output-dir 'work-dir/browse_dataset' \
+ --not-show
+```
+
+## Dataset Conversion
+
+the `tools/` directory also contains script to convert the `balloon` dataset (A small dataset is only for beginner use) into COCO format.
+
+For a detailed description of this script, please refer to the "Dataset Preparation" section in [From getting started to deployment with YOLOv5](./yolov5_tutorial.md).
+
+```shell
+python tools/dataset_converters/balloon2coco.py
+```
+
+## Dataset Download
+
+`tools/misc/download_dataset.py` supports downloading datasets such as `COCO`, `VOC`, `LVIS` and `Balloon`.
+
+```shell
+python tools/misc/download_dataset.py --dataset-name coco2017
+python tools/misc/download_dataset.py --dataset-name voc2007
+python tools/misc/download_dataset.py --dataset-name lvis
+python tools/misc/download_dataset.py --dataset-name balloon [--save-dir ${SAVE_DIR}] [--unzip]
+```
+
+## Model Conversion
+
+The three scripts under the `tools/` directory can help users convert the keys in the official pre-trained model of YOLO to the format of MMYOLO, and use MMYOLO to fine tune the model.
+
+### YOLOv5
+
+Take conversion `yolov5s.pt` as an example:
+
+1. Clone the official YOLOv5 code to the local (currently the maximum supported version is `v6.1`):
+
+```shell
+git clone -b v6.1 https://github.com/ultralytics/yolov5.git
+cd yolov5
+```
+
+2. Download official weight file:
+
+```shell
+wget https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s.pt
+```
+
+3. Copy file `tools/model_converters/yolov5_to_mmyolo.py` to the path of YOLOv5 official code clone:
+
+```shell
+cp ${MMDET_YOLO_PATH}/tools/model_converters/yolov5_to_mmyolo.py yolov5_to_mmyolo.py
+```
+
+4. Conversion
+
+```shell
+python yolov5_to_mmyolo.py --src ${WEIGHT_FILE_PATH} --dst mmyolov5.pt
+```
+
+The converted `mmyolov5.pt` can be used by MMYOLO. The official weight conversion of YOLOv6 is also used in the same way.
+
+### YOLOX
+
+The conversion of YOLOX model **does not need** to download the official YOLOX code, just download the weight.
+
+Take conversion `yolox_s.pth` as an example:
+
+1. Download official weight file:
+
+```shell
+wget https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_s.pth
+```
+
+2. Conversion
+
+```shell
+python tools/model_converters/yolox_to_mmyolo.py --src yolox_s.pth --dst mmyolox.pt
+```
+
+The converted `mmyolox.pt` can be used by MMYOLO.
diff --git a/docs/zh_cn/get_started.md b/docs/zh_cn/get_started.md
index 3ef5785c..27d89d07 100644
--- a/docs/zh_cn/get_started.md
+++ b/docs/zh_cn/get_started.md
@@ -228,7 +228,7 @@ docker build -t mmyolo docker/
用以下命令运行 Docker 镜像:
```shell
-DATA_DIR=/path/to/your/dataset
+export DATA_DIR=/path/to/your/dataset
docker run --gpus all --shm-size=8g -it -v ${DATA_DIR}:/mmyolo/data mmyolo
```
diff --git a/docs/zh_cn/user_guides/useful_tools.md b/docs/zh_cn/user_guides/useful_tools.md
index 067af65d..f802239f 100644
--- a/docs/zh_cn/user_guides/useful_tools.md
+++ b/docs/zh_cn/user_guides/useful_tools.md
@@ -1,12 +1,14 @@
# 实用工具
-我们在 `tools/` 文件夹下提供很多实用工具。 除此之外,你也可以通过 MIM 来快速运行 OpenMMLab 的其他开源库。以 MMDetection 为例,如果想利用 [print_config.py](https://github.com/open-mmlab/mmdetection/blob/3.x/tools/misc/print_config.py),你可以直接采用如下命令,而无需复制源码到 MMYOLO 库中。
+我们在 `tools/` 文件夹下提供很多实用工具。 除此之外,你也可以通过 MIM 来快速运行 OpenMMLab 的其他开源库。
+
+以 MMDetection 为例,如果想利用 [print_config.py](https://github.com/open-mmlab/mmdetection/blob/3.x/tools/misc/print_config.py),你可以直接采用如下命令,而无需复制源码到 MMYOLO 库中。
```shell
mim run mmdet print_config [CONFIG]
```
-需要特别注意的是:上述命令能够成功的前提是 MMDetection 库必须通过 MIM 来安装。
+**注意**:上述命令能够成功的前提是 MMDetection 库必须通过 MIM 来安装。
## 可视化
@@ -15,12 +17,17 @@ mim run mmdet print_config [CONFIG]
脚本 `tools/analysis_tools/browse_coco_json.py` 能够使用可视化显示 COCO 标签在图片的情况
```shell
-python tools/analysis_tools/browse_coco_json.py ${DATA_ROOT} [--ann_file ${ANN_FILE}] [--img_dir ${IMG_DIR}] [--wait-time ${WAIT_TIME}] [--disp-all] [--category-names CATEGORY_NAMES [CATEGORY_NAMES ...]] [--shuffle]
+python tools/analysis_tools/browse_coco_json.py ${DATA_ROOT} \
+ [--ann_file ${ANN_FILE}] \
+ [--img_dir ${IMG_DIR}] \
+ [--wait-time ${WAIT_TIME}] \
+ [--disp-all] [--category-names CATEGORY_NAMES [CATEGORY_NAMES ...]] \
+ [--shuffle]
```
例子:
-1. 查看 `COCO` 全部类别,同时展示 `bbox`、`mask` 等所有类型的标注
+1. 查看 `COCO` 全部类别,同时展示 `bbox`、`mask` 等所有类型的标注:
```shell
python tools/analysis_tools/browse_coco_json.py './data/coco/' \
@@ -29,7 +36,7 @@ python tools/analysis_tools/browse_coco_json.py './data/coco/' \
--disp-all
```
-2. 查看 `COCO` 全部类别,同时仅展示 `bbox` 类型的标注,并打乱显示
+2. 查看 `COCO` 全部类别,同时仅展示 `bbox` 类型的标注,并打乱显示:
```shell
python tools/analysis_tools/browse_coco_json.py './data/coco/' \
@@ -38,7 +45,7 @@ python tools/analysis_tools/browse_coco_json.py './data/coco/' \
--shuffle
```
-3. 只查看 `bicycle` 和 `person` 类别,同时仅展示 `bbox` 类型的标注
+3. 只查看 `bicycle` 和 `person` 类别,同时仅展示 `bbox` 类型的标注:
```shell
python tools/analysis_tools/browse_coco_json.py './data/coco/' \
@@ -47,7 +54,7 @@ python tools/analysis_tools/browse_coco_json.py './data/coco/' \
--category-names 'bicycle' 'person'
```
-4. 查看 `COCO` 全部类别,同时展示 `bbox`、`mask` 等所有类型的标注,并打乱显示
+4. 查看 `COCO` 全部类别,同时展示 `bbox`、`mask` 等所有类型的标注,并打乱显示:
```shell
python tools/analysis_tools/browse_coco_json.py './data/coco/' \
@@ -62,7 +69,11 @@ python tools/analysis_tools/browse_coco_json.py './data/coco/' \
脚本 `tools/analysis_tools/browse_dataset.py` 能够帮助用户去直接窗口可视化数据集的原始图片+展示标签的图片,或者保存可视化图片到指定文件夹内。
```shell
-python tools/analysis_tools/browse_dataset.py ${CONFIG} [-h] [--output-dir ${OUTPUT_DIR}] [--not-show] [--show-interval ${SHOW_INTERVAL}]
+python tools/analysis_tools/browse_dataset.py ${CONFIG} \
+ [-h] \
+ [--output-dir ${OUTPUT_DIR}] \
+ [--not-show] \
+ [--show-interval ${SHOW_INTERVAL}]
```
例子:
@@ -126,26 +137,26 @@ python tools/misc/download_dataset.py --dataset-name balloon [--save-dir ${SAVE_
下面以转换 `yolov5s.pt` 为例:
-1. 将 YOLOv5 官方代码克隆到本地(目前支持的最高版本为 `v6.1` )
+1. 将 YOLOv5 官方代码克隆到本地(目前支持的最高版本为 `v6.1` ):
```shell
git clone -b v6.1 https://github.com/ultralytics/yolov5.git
cd yolov5
```
-2. 下载官方权重
+2. 下载官方权重:
```shell
wget https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s.pt
```
-3. 将 `tools/model_converters/yolov5_to_mmyolo.py` 文件复制到 YOLOv5 官方代码克隆的路径
+3. 将 `tools/model_converters/yolov5_to_mmyolo.py` 文件复制到 YOLOv5 官方代码克隆的路径:
```shell
cp ${MMDET_YOLO_PATH}/tools/model_converters/yolov5_to_mmyolo.py yolov5_to_mmyolo.py
```
-4. 执行转换
+4. 执行转换:
```shell
python yolov5_to_mmyolo.py --src ${WEIGHT_FILE_PATH} --dst mmyolov5.pt
@@ -163,7 +174,7 @@ YOLOX 模型的转换不需要下载 YOLOX 官方代码,只需要下载权重
wget https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_s.pth
```
-2. 执行转换
+2. 执行转换:
```shell
python tools/model_converters/yolox_to_mmyolo.py --src yolox_s.pth --dst mmyolox.pt