add changelog of v0.2.0 (#323)

* add changelog v0.2.0

* update

* update

* update

* update

* update
pull/331/head
Haian Huang(深度眸) 2022-12-01 10:54:44 +08:00 committed by GitHub
parent 1f06f4f594
commit 4e8dac5fff
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 130 additions and 28 deletions

View File

@ -71,19 +71,14 @@ And the figure of P6 model is in [model_design.md](docs/en/algorithm_description
## What's New
💎 **v0.1.3** was released on 10/11/2022:
💎 **v0.2.0** was released on 1/12/2022:
1. Fix training failure when saving best weights based on mmengine 0.3.1
2. Fix `add_dump_metric` error based on mmdet 3.0.0rc3
💎 **v0.1.2** was released on 3/11/2022:
1. Support [YOLOv5/YOLOv6/YOLOX/RTMDet deployments](https://github.com/open-mmlab/mmyolo/blob/main/configs/deploy) for ONNXRuntime and TensorRT
2. Support [YOLOv6](https://github.com/open-mmlab/mmyolo/blob/main/configs/yolov6) s/t/n model training
3. YOLOv5 supports [P6 model training which can input 1280-scale images](https://github.com/open-mmlab/mmyolo/blob/main/configs/yolov5)
4. YOLOv5 supports [VOC dataset training](https://github.com/open-mmlab/mmyolo/blob/main/configs/yolov5/voc)
5. Support [PPYOLOE](https://github.com/open-mmlab/mmyolo/blob/main/configs/ppyoloe) and [YOLOv7](https://github.com/open-mmlab/mmyolo/blob/main/configs/yolov7) model inference and official weight conversion
6. Add YOLOv5 replacement [backbone tutorial](https://github.com/open-mmlab/mmyolo/blob/dev/docs/en/advanced_guides/how_to.md#use-backbone-network-implemented-in-other-openmmlab-repositories) in How-to documentation
1. Support [YOLOv7](https://github.com/open-mmlab/mmyolo/tree/dev/configs/yolov7) P5 and P6 model
2. Support [YOLOv6](https://github.com/open-mmlab/mmyolo/blob/dev/configs/yolov6/README.md) ML model
3. Support [Grad-Based CAM and Grad-Free CAM](https://github.com/open-mmlab/mmyolo/blob/dev/demo/boxam_vis_demo.py)
4. Support [large image inference](https://github.com/open-mmlab/mmyolo/blob/dev/demo/large_image_demo.py) based on sahi
5. Add [easydeploy](https://github.com/open-mmlab/mmyolo/blob/dev/projects/easydeploy/README.md) project under the projects folder
6. Add [custom dataset guide](https://github.com/open-mmlab/mmyolo/blob/dev/docs/zh_cn/user_guides/custom_dataset.md)
For release history and update details, please refer to [changelog](https://mmyolo.readthedocs.io/en/latest/notes/changelog.html).
@ -123,6 +118,7 @@ For different parts from MMDetection, we have also prepared user guides and adva
- [Useful Tools](https://mmdetection.readthedocs.io/en/latest/user_guides/index.html#useful-tools)
- [Visualization](docs/en/user_guides/visualization.md)
- [Useful Tools](docs/en/user_guides/useful_tools.md)
- [Custom Dataset](docs/en/user_guides/custom_dataset.md)
- Algorithm description
@ -155,8 +151,8 @@ Results and models are available in the [model zoo](docs/en/model_zoo.md).
- [x] [YOLOX](configs/yolox)
- [x] [RTMDet](configs/rtmdet)
- [x] [YOLOv6](configs/yolov6)
- [x] [YOLOv7](configs/yolov7)
- [ ] [PPYOLOE](configs/ppyoloe)(Inference only)
- [ ] [YOLOv7](configs/yolov7)(Inference only)
</details>

View File

@ -71,19 +71,14 @@ P6 模型图详见 [model_design.md](docs/zh_CN/algorithm_descriptions/model_des
## 最新进展
💎 **v0.1.3** 版本已经在 2022.11.10 发布:
💎 **v0.2.0** 版本已经在 2022.12.1 发布:
1. 基于 mmengine 0.3.1 修复保存最好权重时训练失败问题
2. 基于 mmdet 3.0.0rc3 修复 `add_dump_metric` 报错 (#253)
💎 **v0.1.2** 版本已经在 2022.11.3 发布:
1. 支持 ONNXRuntime 和 TensorRT 的 [YOLOv5/YOLOv6/YOLOX/RTMDet 部署](https://github.com/open-mmlab/mmyolo/blob/main/configs/deploy)
2. 支持 [YOLOv6](https://github.com/open-mmlab/mmyolo/blob/main/configs/yolov6) s/t/n 模型训练
3. YOLOv5 支持 [P6 大分辨率 1280 尺度训练](https://github.com/open-mmlab/mmyolo/blob/main/configs/yolov5)
4. YOLOv5 支持 [VOC 数据集训练](https://github.com/open-mmlab/mmyolo/blob/main/configs/yolov5/voc)
5. 支持 [PPYOLOE](https://github.com/open-mmlab/mmyolo/blob/main/configs/ppyoloe) 和 [YOLOv7](https://github.com/open-mmlab/mmyolo/blob/main/configs/yolov7) 模型推理和官方权重转化
6. How-to 文档中新增 YOLOv5 替换 [backbone 教程](https://github.com/open-mmlab/mmyolo/blob/dev/docs/zh_cn/advanced_guides/how_to.md#%E8%B7%A8%E5%BA%93%E4%BD%BF%E7%94%A8%E4%B8%BB%E5%B9%B2%E7%BD%91%E7%BB%9C)
1. 支持 [YOLOv7](https://github.com/open-mmlab/mmyolo/tree/dev/configs/yolov7) P5 和 P6 模型
2. 支持 [YOLOv6](https://github.com/open-mmlab/mmyolo/blob/dev/configs/yolov6/README.md) 中的 ML 大模型
3. 支持 [Grad-Based CAM 和 Grad-Free CAM](https://github.com/open-mmlab/mmyolo/blob/dev/demo/boxam_vis_demo.py)
4. 基于 sahi 支持 [大图推理](https://github.com/open-mmlab/mmyolo/blob/dev/demo/large_image_demo.py)
5. projects 文件夹下新增 [easydeploy](https://github.com/open-mmlab/mmyolo/blob/dev/projects/easydeploy/README.md) 项目
6. 新增 [自定义数据集教程](https://github.com/open-mmlab/mmyolo/blob/dev/docs/zh_cn/user_guides/custom_dataset.md)
同时我们也推出了解读视频:
@ -92,7 +87,9 @@ P6 模型图详见 [model_design.md](docs/zh_CN/algorithm_descriptions/model_des
| 🌟 | 特征图可视化 | [![Link](https://i2.hdslb.com/bfs/archive/480a0eb41fce26e0acb65f82a74501418eee1032.jpg@112w_63h_1c.webp)](https://www.bilibili.com/video/BV188411s7o8) [![bilibili](https://img.shields.io/badge/dynamic/json?label=views&style=social&logo=bilibili&query=data.stat.view&url=https%3A%2F%2Fapi.bilibili.com%2Fx%2Fweb-interface%2Fview%3Fbvid%3DBV188411s7o8)](https://www.bilibili.com/video/BV188411s7o8) | [特征图可视化.ipynb](https://github.com/open-mmlab/OpenMMLabCourse/blob/main/codes/MMYOLO_tutorials/%5B%E5%B7%A5%E5%85%B7%E7%B1%BB%E7%AC%AC%E4%B8%80%E6%9C%9F%5D%E7%89%B9%E5%BE%81%E5%9B%BE%E5%8F%AF%E8%A7%86%E5%8C%96.ipynb) |
| 🌟 | 特征图可视化 Demo | [![Link](http://i0.hdslb.com/bfs/archive/081f300c84d6556f40d984cfbe801fc0644ff449.jpg@112w_63h_1c.webp)](https://www.bilibili.com/video/BV1je4y1478R/) [![bilibili](https://img.shields.io/badge/dynamic/json?label=views&style=social&logo=bilibili&query=data.stat.view&url=https%3A%2F%2Fapi.bilibili.com%2Fx%2Fweb-interface%2Fview%3Fbvid%3DBV1je4y1478R)](https://www.bilibili.com/video/BV1je4y1478R/) | |
| 🌟 | 配置全解读 | [![Link](http://i1.hdslb.com/bfs/archive/e06daf640ea39b3c0700bb4dc758f1a253f33e13.jpg@112w_63h_1c.webp)](https://www.bilibili.com/video/BV1214y157ck) [![bilibili](https://img.shields.io/badge/dynamic/json?label=views&style=social&logo=bilibili&query=data.stat.view&url=https%3A%2F%2Fapi.bilibili.com%2Fx%2Fweb-interface%2Fview%3Fbvid%3DBV1214y157ck)](https://www.bilibili.com/video/BV1214y157ck) | [配置全解读文档](https://zhuanlan.zhihu.com/p/577715188) |
| 🌟 | 源码阅读和调试「必备」技巧 | [![Link](https://i2.hdslb.com/bfs/archive/790d2422c879ff20488910da1c4422b667ea6af7.jpg@112w_63h_1c.webp)](https://www.bilibili.com/video/BV1N14y1V7mB) [![bilibili](https://img.shields.io/badge/dynamic/json?label=views&style=social&logo=bilibili&query=data.stat.view&url=https%3A%2F%2Fapi.bilibili.com%2Fx%2Fweb-interface%2Fview%3Fbvid%3DBV1N14y1V7mB)](https://www.bilibili.com/video/BV1N14y1V7mB) | |
| 🌟 | 源码阅读和调试「必备」技巧 | [![Link](https://i2.hdslb.com/bfs/archive/790d2422c879ff20488910da1c4422b667ea6af7.jpg@112w_63h_1c.webp)](https://www.bilibili.com/video/BV1N14y1V7mB) [![bilibili](https://img.shields.io/badge/dynamic/json?label=views&style=social&logo=bilibili&query=data.stat.view&url=https%3A%2F%2Fapi.bilibili.com%2Fx%2Fweb-interface%2Fview%3Fbvid%3DBV1N14y1V7mB)](https://www.bilibili.com/video/BV1N14y1V7mB) | [源码阅读和调试「必备」技巧文档](https://zhuanlan.zhihu.com/p/580885852) |
| 🌟 | 工程文件结构简析 | [![Link](http://i2.hdslb.com/bfs/archive/41030efb84d0cada06d5451c1e6e9bccc0cdb5a3.jpg@112w_63h_1c.webp)](https://www.bilibili.com/video/BV1LP4y117jS)[![bilibili](https://img.shields.io/badge/dynamic/json?label=views&style=social&logo=bilibili&query=data.stat.view&url=https%3A%2F%2Fapi.bilibili.com%2Fx%2Fweb-interface%2Fview%3Fbvid%3DBV1LP4y117jS)](https://www.bilibili.com/video/BV1LP4y117jS) | [工程文件结构简析文档](https://zhuanlan.zhihu.com/p/584807195) |
| 🌟 | 10分钟换遍主干网络 | [![Link](http://i0.hdslb.com/bfs/archive/c51f1aef7c605856777249a7b4478f44bd69f3bd.jpg@112w_63h_1c.webp)](https://www.bilibili.com/video/BV1JG4y1d7GC) [![bilibili](https://img.shields.io/badge/dynamic/json?label=views&style=social&logo=bilibili&query=data.stat.view&url=https%3A%2F%2Fapi.bilibili.com%2Fx%2Fweb-interface%2Fview%3Fbvid%3DBV1JG4y1d7GC)](https://www.bilibili.com/video/BV1JG4y1d7GC) | [10分钟换遍主干网络文档](https://zhuanlan.zhihu.com/p/585641598)<br>[10分钟换遍主干网络.ipynb](https://github.com/open-mmlab/OpenMMLabCourse/blob/main/codes/MMYOLO_tutorials/[实用类第二期]10分钟换遍主干网络.ipynb) |
发布历史和更新细节请参考 [更新日志](https://mmyolo.readthedocs.io/zh_CN/latest/notes/changelog.html)
@ -132,6 +129,7 @@ MMYOLO 用法和 MMDetection 几乎一致,所有教程都是通用的,你也
- [实用工具](https://mmyolo.readthedocs.io/zh_CN/latest/user_guides/index.html#实用工具)
- [可视化教程](docs/zh_cn/user_guides/visualization.md)
- [实用工具](docs/zh_cn/user_guides/useful_tools.md)
- [自定义数据集](docs/zh_cn/user_guides/custom_dataset.md)
- 算法描述
@ -168,8 +166,8 @@ MMYOLO 用法和 MMDetection 几乎一致,所有教程都是通用的,你也
- [x] [YOLOX](configs/yolox)
- [x] [RTMDet](configs/rtmdet)
- [x] [YOLOv6](configs/yolov6)
- [x] [YOLOv7](configs/yolov7)
- [ ] [PPYOLOE](configs/ppyoloe)(仅推理)
- [ ] [YOLOv7](configs/yolov7)(仅推理)
</details>

View File

@ -7,6 +7,7 @@ Compatible MMEngine, MMCV and MMDetection versions are shown as below. Please in
| MMYOLO version | MMDetection version | MMEngine version | MMCV version |
| :------------: | :----------------------: | :----------------------: | :---------------------: |
| main | mmdet>=3.0.0rc3, \<3.1.0 | mmengine>=0.3.1, \<1.0.0 | mmcv>=2.0.0rc0, \<2.1.0 |
| 0.2.0 | mmdet>=3.0.0rc3, \<3.1.0 | mmengine>=0.3.1, \<1.0.0 | mmcv>=2.0.0rc0, \<2.1.0 |
| 0.1.3 | mmdet>=3.0.0rc3, \<3.1.0 | mmengine>=0.3.1, \<1.0.0 | mmcv>=2.0.0rc0, \<2.1.0 |
| 0.1.2 | mmdet>=3.0.0rc2, \<3.1.0 | mmengine>=0.3.0, \<1.0.0 | mmcv>=2.0.0rc0, \<2.1.0 |
| 0.1.1 | mmdet==3.0.0rc1 | mmengine>=0.1.0, \<0.2.0 | mmcv>=2.0.0rc0, \<2.1.0 |

View File

@ -1,5 +1,55 @@
# Changelog
## v0.2.01/12/2022)
### Highlights
1. Support [YOLOv7](https://github.com/open-mmlab/mmyolo/tree/dev/configs/yolov7) P5 and P6 model
2. Support [YOLOv6](https://github.com/open-mmlab/mmyolo/blob/dev/configs/yolov6/README.md) ML model
3. Support [Grad-Based CAM and Grad-Free CAM](https://github.com/open-mmlab/mmyolo/blob/dev/demo/boxam_vis_demo.py)
4. Support [large image inference](https://github.com/open-mmlab/mmyolo/blob/dev/demo/large_image_demo.py) based on sahi
5. Add [easydeploy](https://github.com/open-mmlab/mmyolo/blob/dev/projects/easydeploy/README.md) project under the projects folder
6. Add [custom dataset guide](https://github.com/open-mmlab/mmyolo/blob/dev/docs/zh_cn/user_guides/custom_dataset.md)
### New Features
1. `browse_dataset.py` script supports visualization of original image, data augmentation and intermediate results (#304)
2. Add flag to output labelme label file in `image_demo.py` (#288, #314)
3. Add `labelme2coco` script (#308, #313)
4. Add split COCO dataset script (#311)
5. Add two examples of backbone replacement in `how-to.md` and update `plugin.md` (#291)
6. Add `contributing.md` and `code_style.md` (#322)
7. Add docs about how to use mim to run scripts across libraries (#321)
8. Support `YOLOv5` deployment at RV1126 device (#262)
### Bug Fixes
1. Fix MixUp padding error (#319)
2. Fix scale factor order error of `LetterResize` and `YOLOv5KeepRatioResize` (#305)
3. Fix training errors of `YOLOX Nano` model (#285)
4. Fix `RTMDet` deploy error (#287)
5. Fix int8 deploy config (#315)
6. Fix `make_stage_plugins` doc in `basebackbone` (#296)
7. Enable switch to deploy when create pytorch model in deployment (#324)
8. Fix some errors in `RTMDet` model graph (#317)
### Improvements
1. Add option of json output in `test.py` (#316)
2. Add area condition in `extract_subcoco.py` script (#286)
3. Deployment doc translation (#289)
4. Add YOLOv6 description overview doc (#252)
5. Improve `config.md` (#297, #303)
6Add mosaic9 graph in docstring (#307)
6. Improve `browse_coco_json.py` script args (#309)
7. Refactor some functions in `dataset_analysis.py` to be more general (#294)
#### Contributors
A total of 14 developers contributed to this release.
Thank @fcakyon, @matrixgame2018, @MambaWong, @imAzhou, @triple-Mu, @RangeKing, @PeterH0323, @xin-li-67, @kitecats, @hanrui1sensetime, @AllentDan, @Zheng-LinXiao, @hhaAndroid, @wanghonglie
## v0.1.310/11/2022)
### New Features

View File

@ -7,6 +7,7 @@
| MMYOLO version | MMDetection version | MMEngine version | MMCV version |
| :------------: | :----------------------: | :----------------------: | :---------------------: |
| main | mmdet>=3.0.0rc3, \<3.1.0 | mmengine>=0.3.1, \<1.0.0 | mmcv>=2.0.0rc0, \<2.1.0 |
| 0.2.0 | mmdet>=3.0.0rc3, \<3.1.0 | mmengine>=0.3.1, \<1.0.0 | mmcv>=2.0.0rc0, \<2.1.0 |
| 0.1.3 | mmdet>=3.0.0rc3, \<3.1.0 | mmengine>=0.3.1, \<1.0.0 | mmcv>=2.0.0rc0, \<2.1.0 |
| 0.1.2 | mmdet>=3.0.0rc2, \<3.1.0 | mmengine>=0.3.0, \<1.0.0 | mmcv>=2.0.0rc0, \<2.1.0 |
| 0.1.1 | mmdet==3.0.0rc1 | mmengine>=0.1.0, \<0.2.0 | mmcv>=2.0.0rc0, \<2.1.0 |

View File

@ -1,5 +1,60 @@
# 更新日志
## v0.2.01/12/2022)
### 亮点
1. 支持 [YOLOv7](https://github.com/open-mmlab/mmyolo/tree/dev/configs/yolov7) P5 和 P6 模型
2. 支持 [YOLOv6](https://github.com/open-mmlab/mmyolo/blob/dev/configs/yolov6/README.md) 中的 ML 大模型
3. 支持 [Grad-Based CAM 和 Grad-Free CAM](https://github.com/open-mmlab/mmyolo/blob/dev/demo/boxam_vis_demo.py)
4. 基于 sahi 支持 [大图推理](https://github.com/open-mmlab/mmyolo/blob/dev/demo/large_image_demo.py)
5. projects 文件夹下新增 [easydeploy](https://github.com/open-mmlab/mmyolo/blob/dev/projects/easydeploy/README.md) 项目
6. 新增 [自定义数据集教程](https://github.com/open-mmlab/mmyolo/blob/dev/docs/zh_cn/user_guides/custom_dataset.md)
### 新特性
1. `browse_dataset.py` 脚本支持可视化原图、数据增强后和中间结果功能 (#304)
2. `image_demo.py` 新增预测结果保存为 labelme 格式功能 (#288, #314)
3. 新增 labelme 格式转 COCO 格式脚本 `labelme2coco` (#308, #313)
4. 新增 COCO 数据集切分脚本 `coco_split.py` (#311)
5. `how-to.md` 文档中新增两个 backbone 替换案例以及更新 `plugin.md` (#291)
6. 新增贡献者文档 `contributing.md` and 代码规范文档 `code_style.md` (#322)
7. 新增如何通过 mim 跨库调用脚本文档 (#321)
8. `YOLOv5` 支持 RV1126 设备部署 (#262)
### Bug 修复
1. 修复 `MixUp` padding 错误 (#319)
2. 修复 `LetterResize``YOLOv5KeepRatioResize``scale_factor` 参数顺序错误 (#305)
3. 修复 `YOLOX Nano` 模型训练错误问题 (#285)
4. 修复 `RTMDet` 部署没有导包的错误 (#287)
5. 修复 int8 部署配置错误 (#315)
6. 修复 `basebackbone``make_stage_plugins` 注释 (#296)
7. 部署模块支持切换为 deploy 模式功能 (#324)
8. 修正 `RTMDet` 模型结构图中的错误 (#317)
### 完善
1. `test.py` 中新增 json 格式导出选项 (#316)
2. `extract_subcoco.py` 脚本中新增基于面积阈值过滤规则 (#286)
3. 部署相关中文文档翻译为英文 (#289)
4. 新增 `YOLOv6` 算法描述大纲文档 (#252)
5. 完善 `config.md` (#297, #303)
6. 完善 `mosiac9` 的 docstring (#307)
7. 完善 `browse_coco_json.py` 脚本输入参数 (#309)
8. 重构 `dataset_analysis.py` 中部分函数使其更加通用 (#294)
### 视频
1. 发布了 [工程文件结构简析](https://www.bilibili.com/video/BV1LP4y117jS)
2. 发布了 [10分钟换遍主干网络文档](https://www.bilibili.com/video/BV1JG4y1d7GC)
### 贡献者
总共 14 位开发者参与了本次版本
谢谢 @fcakyon, @matrixgame2018, @MambaWong, @imAzhou, @triple-Mu, @RangeKing, @PeterH0323, @xin-li-67, @kitecats, @hanrui1sensetime, @AllentDan, @Zheng-LinXiao, @hhaAndroid, @wanghonglie
## v0.1.310/11/2022)
### 新特性

View File

@ -1,6 +1,6 @@
# Copyright (c) OpenMMLab. All rights reserved.
__version__ = '0.1.3'
__version__ = '0.2.0'
from typing import Tuple

View File

@ -3,3 +3,4 @@ Import:
- configs/yolov6/metafile.yml
- configs/yolox/metafile.yml
- configs/rtmdet/metafile.yml
- configs/yolov7/metafile.yml