diff --git a/README.md b/README.md
index 96e0c08f..9d2722e2 100644
--- a/README.md
+++ b/README.md
@@ -283,6 +283,7 @@ Results and models are available in the [model zoo](docs/en/model_zoo.md).
Supported Algorithms
- [x] [YOLOv5](configs/yolov5)
+- [ ] [YOLOv5u](configs/yolov5/yolov5u) (Inference only)
- [x] [YOLOX](configs/yolox)
- [x] [RTMDet](configs/rtmdet)
- [x] [RTMDet-Rotated](configs/rtmdet)
diff --git a/README_zh-CN.md b/README_zh-CN.md
index 16c55a65..cc44f711 100644
--- a/README_zh-CN.md
+++ b/README_zh-CN.md
@@ -305,6 +305,7 @@ MMYOLO 用法和 MMDetection 几乎一致,所有教程都是通用的,你也
支持的算法
- [x] [YOLOv5](configs/yolov5)
+- [ ] [YOLOv5u](configs/yolov5/yolov5u) (仅推理)
- [x] [YOLOX](configs/yolox)
- [x] [RTMDet](configs/rtmdet)
- [x] [RTMDet-Rotated](configs/rtmdet)
diff --git a/configs/ppyoloe/README.md b/configs/ppyoloe/README.md
index 6ea827ec..70a5b205 100644
--- a/configs/ppyoloe/README.md
+++ b/configs/ppyoloe/README.md
@@ -19,12 +19,12 @@ PPYOLOE-PLUS-l model structure
### PPYOLOE+ COCO
-| Backbone | Arch | Size | Epoch | SyncBN | Mem (GB) | Box AP | Config | Download |
-| :---------: | :--: | :--: | :---: | :----: | :------: | :----: | :-------------------------------------------------------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
-| PPYOLOE+ -s | P5 | 640 | 80 | Yes | 4.7 | 43.5 | [config](../ppyoloe/ppyoloe_plus_s_fast_8xb8-80e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/ppyoloe/ppyoloe_plus_s_fast_8xb8-80e_coco/ppyoloe_plus_s_fast_8xb8-80e_coco_20230101_154052-9fee7619.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/ppyoloe/ppyoloe_plus_s_fast_8xb8-80e_coco/ppyoloe_plus_s_fast_8xb8-80e_coco_20230101_154052.log.json) |
-| PPYOLOE+ -m | P5 | 640 | 80 | Yes | 8.4 | 49.5 | [config](../ppyoloe/ppyoloe_plus_m_fast_8xb8-80e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/ppyoloe/ppyoloe_plus_m_fast_8xb8-80e_coco/ppyoloe_plus_m_fast_8xb8-80e_coco_20230104_193132-e4325ada.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/ppyoloe/ppyoloe_plus_m_fast_8xb8-80e_coco/ppyoloe_plus_m_fast_8xb8-80e_coco_20230104_193132.log.json) |
-| PPYOLOE+ -l | P5 | 640 | 80 | Yes | 13.2 | 52.6 | [config](../ppyoloe/ppyoloe_plus_l_fast_8xb8-80e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/ppyoloe/ppyoloe_plus_l_fast_8xb8-80e_coco/ppyoloe_plus_l_fast_8xb8-80e_coco_20230102_203825-1864e7b3.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/ppyoloe/ppyoloe_plus_l_fast_8xb8-80e_coco/ppyoloe_plus_l_fast_8xb8-80e_coco_20230102_203825.log.json) |
-| PPYOLOE+ -x | P5 | 640 | 80 | Yes | 19.1 | 54.2 | [config](../ppyoloe/ppyoloe_plus_x_fast_8xb8-80e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/ppyoloe/ppyoloe_plus_x_fast_8xb8-80e_coco/ppyoloe_plus_x_fast_8xb8-80e_coco_20230104_194921-8c953949.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/ppyoloe/ppyoloe_plus_x_fast_8xb8-80e_coco/ppyoloe_plus_x_fast_8xb8-80e_coco_20230104_194921.log.json) |
+| Backbone | Arch | Size | Epoch | SyncBN | Mem (GB) | Box AP | Config | Download |
+| :---------: | :--: | :--: | :---: | :----: | :------: | :----: | :----------------------------------------------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
+| PPYOLOE+ -s | P5 | 640 | 80 | Yes | 4.7 | 43.5 | [config](./ppyoloe_plus_s_fast_8xb8-80e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/ppyoloe/ppyoloe_plus_s_fast_8xb8-80e_coco/ppyoloe_plus_s_fast_8xb8-80e_coco_20230101_154052-9fee7619.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/ppyoloe/ppyoloe_plus_s_fast_8xb8-80e_coco/ppyoloe_plus_s_fast_8xb8-80e_coco_20230101_154052.log.json) |
+| PPYOLOE+ -m | P5 | 640 | 80 | Yes | 8.4 | 49.5 | [config](./ppyoloe_plus_m_fast_8xb8-80e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/ppyoloe/ppyoloe_plus_m_fast_8xb8-80e_coco/ppyoloe_plus_m_fast_8xb8-80e_coco_20230104_193132-e4325ada.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/ppyoloe/ppyoloe_plus_m_fast_8xb8-80e_coco/ppyoloe_plus_m_fast_8xb8-80e_coco_20230104_193132.log.json) |
+| PPYOLOE+ -l | P5 | 640 | 80 | Yes | 13.2 | 52.6 | [config](./ppyoloe_plus_l_fast_8xb8-80e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/ppyoloe/ppyoloe_plus_l_fast_8xb8-80e_coco/ppyoloe_plus_l_fast_8xb8-80e_coco_20230102_203825-1864e7b3.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/ppyoloe/ppyoloe_plus_l_fast_8xb8-80e_coco/ppyoloe_plus_l_fast_8xb8-80e_coco_20230102_203825.log.json) |
+| PPYOLOE+ -x | P5 | 640 | 80 | Yes | 19.1 | 54.2 | [config](./ppyoloe_plus_x_fast_8xb8-80e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/ppyoloe/ppyoloe_plus_x_fast_8xb8-80e_coco/ppyoloe_plus_x_fast_8xb8-80e_coco_20230104_194921-8c953949.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/ppyoloe/ppyoloe_plus_x_fast_8xb8-80e_coco/ppyoloe_plus_x_fast_8xb8-80e_coco_20230104_194921.log.json) |
**Note**:
diff --git a/configs/razor/subnets/README.md b/configs/razor/subnets/README.md
index 093dedd7..456021bd 100644
--- a/configs/razor/subnets/README.md
+++ b/configs/razor/subnets/README.md
@@ -62,14 +62,14 @@ CUDA_VISIBLE_DEVICES=0 PORT=29500 ./tools/dist_test.sh configs/razor/subnets/yol
Here we provide the baseline version of YOLO Series with NAS backbone.
-| Model | size | box AP | Params(M) | FLOPs(G) | Config | Download |
-| :------------------------: | :--: | :----: | :----------: | :------: | :---------------------------------------------------------------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
-| yolov5-s | 640 | 37.7 | 7.235 | 8.265 | [config](https://github.com/open-mmlab/mmyolo/blob/main/configs/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco/yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco/yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700.log.json) |
-| yolov5_s_spos_shufflenetv2 | 640 | 38.0 | 7.04(-2.7%) | 7.03 | [config](https://github.com/open-mmlab/mmyolo/tree/dev/configs/razor/subnets/yolov5_s_spos_shufflenetv2_syncbn_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmrazor/v1/yolo_nas_backbone/yolov5_s_spos_shufflenetv2_syncbn_8xb16-300e_coco_20230211_220635-578be9a9.pth) \| log |
-| yolov6-s | 640 | 44.0 | 18.869 | 24.253 | [config](https://github.com/open-mmlab/mmyolo/blob/main/configs/yolov6/yolov6_s_syncbn_fast_8xb32-400e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov6/yolov6_s_syncbn_fast_8xb32-400e_coco/yolov6_s_syncbn_fast_8xb32-400e_coco_20221102_203035-932e1d91.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov6/yolov6_s_syncbn_fast_8xb32-400e_coco/yolov6_s_syncbn_fast_8xb32-400e_coco_20221102_203035.log.json) |
-| yolov6_l_attentivenas_a6 | 640 | 45.3 | 18.38(-2.6%) | 8.49 | [config](https://github.com/open-mmlab/mmyolo/tree/dev/configs/razor/subnets/yolov6_l_attentivenas_a6_d12_syncbn_fast_8xb32-300e_coco.py) | [model](https://download.openmmlab.com/mmrazor/v1/yolo_nas_backbone/yolov6_l_attentivenas_a6_d12_syncbn_fast_8xb32-300e_coco_20230211_222409-dcc72668.pth) \| log |
-| RTMDet-tiny | 640 | 41.0 | 4.8 | 8.1 | [config](./rtmdet_l_syncbn_fast_8xb32-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/rtmdet/rtmdet_tiny_syncbn_fast_8xb32-300e_coco/rtmdet_tiny_syncbn_fast_8xb32-300e_coco_20230102_140117-dbb1dc83.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/rtmdet/rtmdet_tiny_syncbn_fast_8xb32-300e_coco/rtmdet_tiny_syncbn_fast_8xb32-300e_coco_20230102_140117.log.json) |
-| rtmdet_tiny_ofa_lat31 | 960 | 41.3 | 3.91(-18.5%) | 6.09 | [config](https://github.com/open-mmlab/mmyolo/tree/dev/configs/razor/subnets/rtmdet_tiny_ofa_lat31_syncbn_16xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmrazor/v1/yolo_nas_backbone/rtmdet_tiny_ofa_lat31_syncbn_16xb16-300e_coco_20230214_210623-449bb2a0.pth) \| log |
+| Model | size | box AP | Params(M) | FLOPs(G) | Config | Download |
+| :------------------------: | :--: | :----: | :----------: | :------: | :---------------------------------------------------------------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
+| yolov5-s | 640 | 37.7 | 7.235 | 8.265 | [config](../../yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco/yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco/yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700.log.json) |
+| yolov5_s_spos_shufflenetv2 | 640 | 38.0 | 7.04(-2.7%) | 7.03 | [config](./yolov5_s_spos_shufflenetv2_syncbn_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmrazor/v1/yolo_nas_backbone/yolov5_s_spos_shufflenetv2_syncbn_8xb16-300e_coco_20230211_220635-578be9a9.pth) \| log |
+| yolov6-s | 640 | 44.0 | 18.869 | 24.253 | [config](../../yolov6/yolov6_s_syncbn_fast_8xb32-400e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov6/yolov6_s_syncbn_fast_8xb32-400e_coco/yolov6_s_syncbn_fast_8xb32-400e_coco_20221102_203035-932e1d91.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov6/yolov6_s_syncbn_fast_8xb32-400e_coco/yolov6_s_syncbn_fast_8xb32-400e_coco_20221102_203035.log.json) |
+| yolov6_l_attentivenas_a6 | 640 | 45.3 | 18.38(-2.6%) | 8.49 | [config](./yolov6_l_attentivenas_a6_d12_syncbn_fast_8xb32-300e_coco.py) | [model](https://download.openmmlab.com/mmrazor/v1/yolo_nas_backbone/yolov6_l_attentivenas_a6_d12_syncbn_fast_8xb32-300e_coco_20230211_222409-dcc72668.pth) \| log |
+| RTMDet-tiny | 640 | 41.0 | 4.8 | 8.1 | [config](../../rtmdet/rtmdet_l_syncbn_fast_8xb32-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/rtmdet/rtmdet_tiny_syncbn_fast_8xb32-300e_coco/rtmdet_tiny_syncbn_fast_8xb32-300e_coco_20230102_140117-dbb1dc83.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/rtmdet/rtmdet_tiny_syncbn_fast_8xb32-300e_coco/rtmdet_tiny_syncbn_fast_8xb32-300e_coco_20230102_140117.log.json) |
+| rtmdet_tiny_ofa_lat31 | 960 | 41.3 | 3.91(-18.5%) | 6.09 | [config](./rtmdet_tiny_ofa_lat31_syncbn_16xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmrazor/v1/yolo_nas_backbone/rtmdet_tiny_ofa_lat31_syncbn_16xb16-300e_coco_20230214_210623-449bb2a0.pth) \| log |
**Note**:
diff --git a/configs/yolov5/README.md b/configs/yolov5/README.md
index 4f7d236a..cc6eff2b 100644
--- a/configs/yolov5/README.md
+++ b/configs/yolov5/README.md
@@ -20,22 +20,27 @@ YOLOv5-l-P6 model structure
### COCO
-| Backbone | Arch | size | Mask Refine | SyncBN | AMP | Mem (GB) | box AP | TTA box AP | Config | Download |
-| :------: | :--: | :--: | :---------: | :----: | :-: | :------: | :---------: | :--------: | :-------------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
-| YOLOv5-n | P5 | 640 | No | Yes | Yes | 1.5 | 28.0 | 30.7 | [config](../yolov5/yolov5_n-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_n-v61_syncbn_fast_8xb16-300e_coco/yolov5_n-v61_syncbn_fast_8xb16-300e_coco_20220919_090739-b804c1ad.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_n-v61_syncbn_fast_8xb16-300e_coco/yolov5_n-v61_syncbn_fast_8xb16-300e_coco_20220919_090739.log.json) |
-| YOLOv5-n | P5 | 640 | Yes | Yes | Yes | 1.5 | 28.0 | | [config](../yolov5/mask_refine/yolov5_n_mask-refine-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/mask_refine/yolov5_n_mask-refine-v61_syncbn_fast_8xb16-300e_coco/yolov5_n_mask-refine-v61_syncbn_fast_8xb16-300e_coco_20230305_152706-712fb1b2.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/mask_refine/yolov5_n_mask-refine-v61_syncbn_fast_8xb16-300e_coco/yolov5_n_mask-refine-v61_syncbn_fast_8xb16-300e_coco_20230305_152706.log.json) |
-| YOLOv5-s | P5 | 640 | No | Yes | Yes | 2.7 | 37.7 | 40.2 | [config](../yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco/yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco/yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700.log.json) |
-| YOLOv5-s | P5 | 640 | Yes | Yes | Yes | 2.7 | 38.0 (+0.3) | | [config](../yolov5/mask_refine/yolov5_s_mask-refine-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/mask_refine/yolov5_s_mask-refine-v61_syncbn_fast_8xb16-300e_coco/yolov5_s_mask-refine-v61_syncbn_fast_8xb16-300e_coco_20230304_033134-8e0cd271.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/mask_refine/yolov5_s_mask-refine-v61_syncbn_fast_8xb16-300e_coco/yolov5_s_mask-refine-v61_syncbn_fast_8xb16-300e_coco_20230304_033134.log.json) |
-| YOLOv5-m | P5 | 640 | No | Yes | Yes | 5.0 | 45.3 | 46.9 | [config](../yolov5/yolov5_m-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_m-v61_syncbn_fast_8xb16-300e_coco/yolov5_m-v61_syncbn_fast_8xb16-300e_coco_20220917_204944-516a710f.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_m-v61_syncbn_fast_8xb16-300e_coco/yolov5_m-v61_syncbn_fast_8xb16-300e_coco_20220917_204944.log.json) |
-| YOLOv5-m | P5 | 640 | Yes | Yes | Yes | 5.0 | 45.3 | | [config](../yolov5/mask_refine/yolov5_m_mask-refine-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/mask_refine/yolov5_m_mask-refine-v61_syncbn_fast_8xb16-300e_coco/yolov5_m_mask-refine-v61_syncbn_fast_8xb16-300e_coco_20230305_153946-44e96155.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/mask_refine/yolov5_m_mask-refine-v61_syncbn_fast_8xb16-300e_coco/yolov5_m_mask-refine-v61_syncbn_fast_8xb16-300e_coco_20230305_153946.log.json) |
-| YOLOv5-l | P5 | 640 | No | Yes | Yes | 8.1 | 48.8 | 49.9 | [config](../yolov5/yolov5_l-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_l-v61_syncbn_fast_8xb16-300e_coco/yolov5_l-v61_syncbn_fast_8xb16-300e_coco_20220917_031007-096ef0eb.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_l-v61_syncbn_fast_8xb16-300e_coco/yolov5_l-v61_syncbn_fast_8xb16-300e_coco_20220917_031007.log.json) |
-| YOLOv5-l | P5 | 640 | Yes | Yes | Yes | 8.1 | 49.3 (+0.5) | | [config](../yolov5/mask_refine/yolov5_l_mask-refine-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/mask_refine/yolov5_l_mask-refine-v61_syncbn_fast_8xb16-300e_coco/yolov5_l_mask-refine-v61_syncbn_fast_8xb16-300e_coco_20230305_154301-2c1d912a.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/mask_refine/yolov5_l_mask-refine-v61_syncbn_fast_8xb16-300e_coco/yolov5_l_mask-refine-v61_syncbn_fast_8xb16-300e_coco_20230305_154301.log.json) |
-| YOLOv5-x | P5 | 640 | No | Yes | Yes | 12.2 | 50.2 | | [config](../yolov5/yolov5_x-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_x-v61_syncbn_fast_8xb16-300e_coco/yolov5_x-v61_syncbn_fast_8xb16-300e_coco_20230305_152943-00776a4b.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_x-v61_syncbn_fast_8xb16-300e_coco/yolov5_x-v61_syncbn_fast_8xb16-300e_coco_20230305_152943.log.json) |
-| YOLOv5-x | P5 | 640 | Yes | Yes | Yes | 12.2 | 50.9 (+0.7) | | [config](../yolov5/mask_refine/yolov5_x_mask-refine-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/mask_refine/yolov5_x_mask-refine-v61_syncbn_fast_8xb16-300e_coco/yolov5_x_mask-refine-v61_syncbn_fast_8xb16-300e_coco_20230305_154321-07edeb62.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/mask_refine/yolov5_x_mask-refine-v61_syncbn_fast_8xb16-300e_coco/yolov5_x_mask-refine-v61_syncbn_fast_8xb16-300e_coco_20230305_154321.log.json) |
-| YOLOv5-n | P6 | 1280 | No | Yes | Yes | 5.8 | 35.9 | | [config](../yolov5/yolov5_n-p6-v62_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_n-p6-v62_syncbn_fast_8xb16-300e_coco/yolov5_n-p6-v62_syncbn_fast_8xb16-300e_coco_20221027_224705-d493c5f3.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_n-p6-v62_syncbn_fast_8xb16-300e_coco/yolov5_n-p6-v62_syncbn_fast_8xb16-300e_coco_20221027_224705.log.json) |
-| YOLOv5-s | P6 | 1280 | No | Yes | Yes | 10.5 | 44.4 | | [config](../yolov5/yolov5_s-p6-v62_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-p6-v62_syncbn_fast_8xb16-300e_coco/yolov5_s-p6-v62_syncbn_fast_8xb16-300e_coco_20221027_215044-58865c19.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-p6-v62_syncbn_fast_8xb16-300e_coco/yolov5_s-p6-v62_syncbn_fast_8xb16-300e_coco_20221027_215044.log.json) |
-| YOLOv5-m | P6 | 1280 | No | Yes | Yes | 19.1 | 51.3 | | [config](../yolov5/yolov5_m-p6-v62_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_m-p6-v62_syncbn_fast_8xb16-300e_coco/yolov5_m-p6-v62_syncbn_fast_8xb16-300e_coco_20221027_230453-49564d58.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_m-p6-v62_syncbn_fast_8xb16-300e_coco/yolov5_m-p6-v62_syncbn_fast_8xb16-300e_coco_20221027_230453.log.json) |
-| YOLOv5-l | P6 | 1280 | No | Yes | Yes | 30.5 | 53.7 | | [config](../yolov5/yolov5_l-p6-v62_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_l-p6-v62_syncbn_fast_8xb16-300e_coco/yolov5_l-p6-v62_syncbn_fast_8xb16-300e_coco_20221027_234308-7a2ba6bf.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_l-p6-v62_syncbn_fast_8xb16-300e_coco/yolov5_l-p6-v62_syncbn_fast_8xb16-300e_coco_20221027_234308.log.json) |
+| Backbone | Arch | size | Mask Refine | SyncBN | AMP | Mem (GB) | box AP | TTA box AP | Config | Download |
+| :-------: | :--: | :--: | :---------: | :----: | :-: | :------: | :---------: | :--------: | :-----------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
+| YOLOv5-n | P5 | 640 | No | Yes | Yes | 1.5 | 28.0 | 30.7 | [config](./yolov5_n-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_n-v61_syncbn_fast_8xb16-300e_coco/yolov5_n-v61_syncbn_fast_8xb16-300e_coco_20220919_090739-b804c1ad.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_n-v61_syncbn_fast_8xb16-300e_coco/yolov5_n-v61_syncbn_fast_8xb16-300e_coco_20220919_090739.log.json) |
+| YOLOv5-n | P5 | 640 | Yes | Yes | Yes | 1.5 | 28.0 | | [config](./mask_refine/yolov5_n_mask-refine-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/mask_refine/yolov5_n_mask-refine-v61_syncbn_fast_8xb16-300e_coco/yolov5_n_mask-refine-v61_syncbn_fast_8xb16-300e_coco_20230305_152706-712fb1b2.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/mask_refine/yolov5_n_mask-refine-v61_syncbn_fast_8xb16-300e_coco/yolov5_n_mask-refine-v61_syncbn_fast_8xb16-300e_coco_20230305_152706.log.json) |
+| YOLOv5u-n | P5 | 640 | Yes | Yes | Yes | | | | [config](./yolov5/yolov5u/yolov5_n_mask-refine_syncbn_fast_8xb16-300e_coco.py) | [model](<>) \| [log](<>) |
+| YOLOv5-s | P5 | 640 | No | Yes | Yes | 2.7 | 37.7 | 40.2 | [config](./yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco/yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco/yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700.log.json) |
+| YOLOv5-s | P5 | 640 | Yes | Yes | Yes | 2.7 | 38.0 (+0.3) | | [config](./mask_refine/yolov5_s_mask-refine-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/mask_refine/yolov5_s_mask-refine-v61_syncbn_fast_8xb16-300e_coco/yolov5_s_mask-refine-v61_syncbn_fast_8xb16-300e_coco_20230304_033134-8e0cd271.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/mask_refine/yolov5_s_mask-refine-v61_syncbn_fast_8xb16-300e_coco/yolov5_s_mask-refine-v61_syncbn_fast_8xb16-300e_coco_20230304_033134.log.json) |
+| YOLOv5u-s | P5 | 640 | Yes | Yes | Yes | | | | [config](./yolov5/yolov5u/yolov5_s_mask-refine_syncbn_fast_8xb16-300e_coco.py) | [model](<>) \| [log](<>) |
+| YOLOv5-m | P5 | 640 | No | Yes | Yes | 5.0 | 45.3 | 46.9 | [config](./yolov5_m-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_m-v61_syncbn_fast_8xb16-300e_coco/yolov5_m-v61_syncbn_fast_8xb16-300e_coco_20220917_204944-516a710f.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_m-v61_syncbn_fast_8xb16-300e_coco/yolov5_m-v61_syncbn_fast_8xb16-300e_coco_20220917_204944.log.json) |
+| YOLOv5-m | P5 | 640 | Yes | Yes | Yes | 5.0 | 45.3 | | [config](./mask_refine/yolov5_m_mask-refine-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/mask_refine/yolov5_m_mask-refine-v61_syncbn_fast_8xb16-300e_coco/yolov5_m_mask-refine-v61_syncbn_fast_8xb16-300e_coco_20230305_153946-44e96155.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/mask_refine/yolov5_m_mask-refine-v61_syncbn_fast_8xb16-300e_coco/yolov5_m_mask-refine-v61_syncbn_fast_8xb16-300e_coco_20230305_153946.log.json) |
+| YOLOv5u-m | P5 | 640 | Yes | Yes | Yes | | | | [config](./yolov5/yolov5u/yolov5_m_mask-refine_syncbn_fast_8xb16-300e_coco.py) | [model](<>) \| [log](<>) |
+| YOLOv5-l | P5 | 640 | No | Yes | Yes | 8.1 | 48.8 | 49.9 | [config](./yolov5_l-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_l-v61_syncbn_fast_8xb16-300e_coco/yolov5_l-v61_syncbn_fast_8xb16-300e_coco_20220917_031007-096ef0eb.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_l-v61_syncbn_fast_8xb16-300e_coco/yolov5_l-v61_syncbn_fast_8xb16-300e_coco_20220917_031007.log.json) |
+| YOLOv5-l | P5 | 640 | Yes | Yes | Yes | 8.1 | 49.3 (+0.5) | | [config](./mask_refine/yolov5_l_mask-refine-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/mask_refine/yolov5_l_mask-refine-v61_syncbn_fast_8xb16-300e_coco/yolov5_l_mask-refine-v61_syncbn_fast_8xb16-300e_coco_20230305_154301-2c1d912a.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/mask_refine/yolov5_l_mask-refine-v61_syncbn_fast_8xb16-300e_coco/yolov5_l_mask-refine-v61_syncbn_fast_8xb16-300e_coco_20230305_154301.log.json) |
+| YOLOv5u-l | P5 | 640 | Yes | Yes | Yes | | | | [config](./yolov5/yolov5u/yolov5_l_mask-refine_syncbn_fast_8xb16-300e_coco.py) | [model](<>) \| [log](<>) |
+| YOLOv5-x | P5 | 640 | No | Yes | Yes | 12.2 | 50.2 | | [config](./yolov5_x-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_x-v61_syncbn_fast_8xb16-300e_coco/yolov5_x-v61_syncbn_fast_8xb16-300e_coco_20230305_152943-00776a4b.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_x-v61_syncbn_fast_8xb16-300e_coco/yolov5_x-v61_syncbn_fast_8xb16-300e_coco_20230305_152943.log.json) |
+| YOLOv5-x | P5 | 640 | Yes | Yes | Yes | 12.2 | 50.9 (+0.7) | | [config](./mask_refine/yolov5_x_mask-refine-v61_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/mask_refine/yolov5_x_mask-refine-v61_syncbn_fast_8xb16-300e_coco/yolov5_x_mask-refine-v61_syncbn_fast_8xb16-300e_coco_20230305_154321-07edeb62.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/mask_refine/yolov5_x_mask-refine-v61_syncbn_fast_8xb16-300e_coco/yolov5_x_mask-refine-v61_syncbn_fast_8xb16-300e_coco_20230305_154321.log.json) |
+| YOLOv5u-x | P5 | 640 | Yes | Yes | Yes | | | | [config](./yolov5/yolov5u/yolov5_x_mask-refine_syncbn_fast_8xb16-300e_coco.py) | [model](<>) \| [log](<>) |
+| YOLOv5-n | P6 | 1280 | No | Yes | Yes | 5.8 | 35.9 | | [config](./yolov5_n-p6-v62_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_n-p6-v62_syncbn_fast_8xb16-300e_coco/yolov5_n-p6-v62_syncbn_fast_8xb16-300e_coco_20221027_224705-d493c5f3.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_n-p6-v62_syncbn_fast_8xb16-300e_coco/yolov5_n-p6-v62_syncbn_fast_8xb16-300e_coco_20221027_224705.log.json) |
+| YOLOv5-s | P6 | 1280 | No | Yes | Yes | 10.5 | 44.4 | | [config](./yolov5_s-p6-v62_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-p6-v62_syncbn_fast_8xb16-300e_coco/yolov5_s-p6-v62_syncbn_fast_8xb16-300e_coco_20221027_215044-58865c19.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-p6-v62_syncbn_fast_8xb16-300e_coco/yolov5_s-p6-v62_syncbn_fast_8xb16-300e_coco_20221027_215044.log.json) |
+| YOLOv5-m | P6 | 1280 | No | Yes | Yes | 19.1 | 51.3 | | [config](./yolov5_m-p6-v62_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_m-p6-v62_syncbn_fast_8xb16-300e_coco/yolov5_m-p6-v62_syncbn_fast_8xb16-300e_coco_20221027_230453-49564d58.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_m-p6-v62_syncbn_fast_8xb16-300e_coco/yolov5_m-p6-v62_syncbn_fast_8xb16-300e_coco_20221027_230453.log.json) |
+| YOLOv5-l | P6 | 1280 | No | Yes | Yes | 30.5 | 53.7 | | [config](./yolov5_l-p6-v62_syncbn_fast_8xb16-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_l-p6-v62_syncbn_fast_8xb16-300e_coco/yolov5_l-p6-v62_syncbn_fast_8xb16-300e_coco_20221027_234308-7a2ba6bf.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_l-p6-v62_syncbn_fast_8xb16-300e_coco/yolov5_l-p6-v62_syncbn_fast_8xb16-300e_coco_20221027_234308.log.json) |
**Note**:
@@ -46,15 +51,16 @@ YOLOv5-l-P6 model structure
5. The performance is unstable and may fluctuate by about 0.4 mAP and the highest performance weight in `COCO` training in `YOLOv5` may not be the last epoch.
6. `TTA` means that Test Time Augmentation. It's perform 3 multi-scaling transformations on the image, followed by 2 flipping transformations (flipping and not flipping). You only need to specify `--tta` when testing to enable. see [TTA](https://github.com/open-mmlab/mmyolo/blob/dev/docs/en/common_usage/tta.md) for details.
7. The performance of `Mask Refine` training is for the weight performance officially released by YOLOv5. `Mask Refine` means refining bbox by mask while loading annotations and transforming after `YOLOv5RandomAffine`, `Copy Paste` means using `YOLOv5CopyPaste`.
+8. `YOLOv5u` models use the same loss functions and split Detect head as `YOLOv8` models for improved performance, but only requires 300 epochs.
### VOC
-| Backbone | size | Batchsize | AMP | Mem (GB) | box AP(COCO metric) | Config | Download |
-| :------: | :--: | :-------: | :-: | :------: | :-----------------: | :------------------------------------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
-| YOLOv5-n | 512 | 64 | Yes | 3.5 | 51.2 | [config](https://github.com/open-mmlab/mmyolo/tree/main/configs/yolov5/voc/yolov5_n-v61_fast_1xb64-50e_voc.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_n-v61_fast_1xb64-50e_voc/yolov5_n-v61_fast_1xb64-50e_voc_20221017_234254-f1493430.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_n-v61_fast_1xb64-50e_voc/yolov5_n-v61_fast_1xb64-50e_voc_20221017_234254.log.json) |
-| YOLOv5-s | 512 | 64 | Yes | 6.5 | 62.7 | [config](https://github.com/open-mmlab/mmyolo/tree/main/configs/yolov5/voc/yolov5_s-v61_fast_1xb64-50e_voc.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-v61_fast_1xb64-50e_voc/yolov5_s-v61_fast_1xb64-50e_voc_20221017_234156-0009b33e.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-v61_fast_1xb64-50e_voc/yolov5_s-v61_fast_1xb64-50e_voc_20221017_234156.log.json) |
-| YOLOv5-m | 512 | 64 | Yes | 12.0 | 70.1 | [config](https://github.com/open-mmlab/mmyolo/tree/main/configs/yolov5/voc/yolov5_m-v61_fast_1xb64-50e_voc.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_m-v61_fast_1xb64-50e_voc/yolov5_m-v61_fast_1xb64-50e_voc_20221017_114138-815c143a.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_m-v61_fast_1xb64-50e_voc/yolov5_m-v61_fast_1xb64-50e_voc_20221017_114138.log.json) |
-| YOLOv5-l | 512 | 32 | Yes | 10.0 | 73.1 | [config](https://github.com/open-mmlab/mmyolo/tree/main/configs/yolov5/voc/yolov5_l-v61_fast_1xb32-50e_voc.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_l-v61_fast_1xb32-50e_voc/yolov5_l-v61_fast_1xb32-50e_voc_20221017_045500-edc7e0d8.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_l-v61_fast_1xb32-50e_voc/yolov5_l-v61_fast_1xb32-50e_voc_20221017_045500.log.json) |
+| Backbone | size | Batchsize | AMP | Mem (GB) | box AP(COCO metric) | Config | Download |
+| :------: | :--: | :-------: | :-: | :------: | :-----------------: | :-------------------------------------------------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
+| YOLOv5-n | 512 | 64 | Yes | 3.5 | 51.2 | [config](./yolov5/voc/yolov5_n-v61_fast_1xb64-50e_voc.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_n-v61_fast_1xb64-50e_voc/yolov5_n-v61_fast_1xb64-50e_voc_20221017_234254-f1493430.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_n-v61_fast_1xb64-50e_voc/yolov5_n-v61_fast_1xb64-50e_voc_20221017_234254.log.json) |
+| YOLOv5-s | 512 | 64 | Yes | 6.5 | 62.7 | [config](./yolov5/voc/yolov5_s-v61_fast_1xb64-50e_voc.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-v61_fast_1xb64-50e_voc/yolov5_s-v61_fast_1xb64-50e_voc_20221017_234156-0009b33e.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-v61_fast_1xb64-50e_voc/yolov5_s-v61_fast_1xb64-50e_voc_20221017_234156.log.json) |
+| YOLOv5-m | 512 | 64 | Yes | 12.0 | 70.1 | [config](./yolov5/voc/yolov5_m-v61_fast_1xb64-50e_voc.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_m-v61_fast_1xb64-50e_voc/yolov5_m-v61_fast_1xb64-50e_voc_20221017_114138-815c143a.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_m-v61_fast_1xb64-50e_voc/yolov5_m-v61_fast_1xb64-50e_voc_20221017_114138.log.json) |
+| YOLOv5-l | 512 | 32 | Yes | 10.0 | 73.1 | [config](./yolov5/voc/yolov5_l-v61_fast_1xb32-50e_voc.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_l-v61_fast_1xb32-50e_voc/yolov5_l-v61_fast_1xb32-50e_voc_20221017_045500-edc7e0d8.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_l-v61_fast_1xb32-50e_voc/yolov5_l-v61_fast_1xb32-50e_voc_20221017_045500.log.json) |
**Note**:
@@ -68,10 +74,10 @@ YOLOv5-l-P6 model structure
Since the `iscrowd` annotation of the COCO dataset is not equivalent to `ignore`, we use the CrowdHuman dataset to verify that the YOLOv5 ignore logic is correct.
-| Backbone | size | SyncBN | AMP | Mem (GB) | ignore_iof_thr | box AP50(CrowDHuman Metric) | MR | JI | Config | Download |
-| :------: | :--: | :----: | :-: | :------: | :------------: | :-------------------------: | :--: | :---: | :-----------------------------------------------------------------------------------------------------------------------------: | :------: |
-| YOLOv5-s | 640 | Yes | Yes | 2.6 | -1 | 85.79 | 48.7 | 75.33 | [config](https://github.com/open-mmlab/mmyolo/tree/main/configs/yolov5/crowdhuman/yolov5_s-v61_fast_8xb16-300e_crowdhuman.py) | |
-| YOLOv5-s | 640 | Yes | Yes | 2.6 | 0.5 | 86.17 | 48.8 | 75.87 | [config](https://github.com/open-mmlab/mmyolo/tree/main/configs/yolov5/crowdhuman/yolov5_s-v61_8xb16-300e_ignore_crowdhuman.py) | |
+| Backbone | size | SyncBN | AMP | Mem (GB) | ignore_iof_thr | box AP50(CrowDHuman Metric) | MR | JI | Config | Download |
+| :------: | :--: | :----: | :-: | :------: | :------------: | :-------------------------: | :--: | :---: | :------------------------------------------------------------------------: | :------: |
+| YOLOv5-s | 640 | Yes | Yes | 2.6 | -1 | 85.79 | 48.7 | 75.33 | [config](./yolov5/crowdhuman/yolov5_s-v61_fast_8xb16-300e_crowdhuman.py) | |
+| YOLOv5-s | 640 | Yes | Yes | 2.6 | 0.5 | 86.17 | 48.8 | 75.87 | [config](./yolov5/crowdhuman/yolov5_s-v61_8xb16-300e_ignore_crowdhuman.py) | |
**Note**:
diff --git a/configs/yolov5/yolov5u/yolov5u_l_mask-refine_syncbn_fast_8xb16-300e_coco.py b/configs/yolov5/yolov5u/yolov5u_l_mask-refine_syncbn_fast_8xb16-300e_coco.py
new file mode 100644
index 00000000..60c11feb
--- /dev/null
+++ b/configs/yolov5/yolov5u/yolov5u_l_mask-refine_syncbn_fast_8xb16-300e_coco.py
@@ -0,0 +1,59 @@
+_base_ = './yolov5u_m_mask-refine_syncbn_fast_8xb16-300e_coco.py'
+
+# This config will refine bbox by mask while loading annotations and
+# transforming after `YOLOv5RandomAffine`
+
+# ========================modified parameters======================
+deepen_factor = 1.00
+widen_factor = 1.00
+
+mixup_prob = 0.15
+copypaste_prob = 0.3
+
+# =======================Unmodified in most cases==================
+img_scale = _base_.img_scale
+pre_transform = _base_.pre_transform
+last_transform = _base_.last_transform
+affine_scale = _base_.affine_scale
+
+model = dict(
+ backbone=dict(
+ deepen_factor=deepen_factor,
+ widen_factor=widen_factor,
+ ),
+ neck=dict(
+ deepen_factor=deepen_factor,
+ widen_factor=widen_factor,
+ ),
+ bbox_head=dict(head_module=dict(widen_factor=widen_factor)))
+
+mosaic_affine_transform = [
+ dict(
+ type='Mosaic',
+ img_scale=img_scale,
+ pad_val=114.0,
+ pre_transform=pre_transform),
+ dict(type='YOLOv5CopyPaste', prob=copypaste_prob),
+ dict(
+ type='YOLOv5RandomAffine',
+ max_rotate_degree=0.0,
+ max_shear_degree=0.0,
+ max_aspect_ratio=100.,
+ scaling_ratio_range=(1 - affine_scale, 1 + affine_scale),
+ # img_scale is (width, height)
+ border=(-img_scale[0] // 2, -img_scale[1] // 2),
+ border_val=(114, 114, 114),
+ min_area_ratio=_base_.min_area_ratio,
+ use_mask_refine=_base_.use_mask2refine)
+]
+
+train_pipeline = [
+ *pre_transform, *mosaic_affine_transform,
+ dict(
+ type='YOLOv5MixUp',
+ prob=mixup_prob,
+ pre_transform=[*pre_transform, *mosaic_affine_transform]),
+ *last_transform
+]
+
+train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
diff --git a/configs/yolov5/yolov5u/yolov5u_l_syncbn_fast_8xb16-300e_coco.py b/configs/yolov5/yolov5u/yolov5u_l_syncbn_fast_8xb16-300e_coco.py
new file mode 100644
index 00000000..22b9e881
--- /dev/null
+++ b/configs/yolov5/yolov5u/yolov5u_l_syncbn_fast_8xb16-300e_coco.py
@@ -0,0 +1,18 @@
+_base_ = './yolov5u_s_syncbn_fast_8xb16-300e_coco.py'
+
+# ========================modified parameters======================
+# TODO: Update the training hyperparameters
+deepen_factor = 1.0
+widen_factor = 1.0
+
+# =======================Unmodified in most cases==================
+model = dict(
+ backbone=dict(
+ deepen_factor=deepen_factor,
+ widen_factor=widen_factor,
+ ),
+ neck=dict(
+ deepen_factor=deepen_factor,
+ widen_factor=widen_factor,
+ ),
+ bbox_head=dict(head_module=dict(widen_factor=widen_factor)))
diff --git a/configs/yolov5/yolov5u/yolov5u_m_mask-refine_syncbn_fast_8xb16-300e_coco.py b/configs/yolov5/yolov5u/yolov5u_m_mask-refine_syncbn_fast_8xb16-300e_coco.py
new file mode 100644
index 00000000..ecc86fdd
--- /dev/null
+++ b/configs/yolov5/yolov5u/yolov5u_m_mask-refine_syncbn_fast_8xb16-300e_coco.py
@@ -0,0 +1,79 @@
+_base_ = './yolov5u_s_mask-refine_syncbn_fast_8xb16-300e_coco.py'
+
+# This config will refine bbox by mask while loading annotations and
+# transforming after `YOLOv5RandomAffine`
+
+# ========================modified parameters======================
+deepen_factor = 0.67
+widen_factor = 0.75
+
+affine_scale = 0.9
+mixup_prob = 0.1
+copypaste_prob = 0.1
+
+# =======================Unmodified in most cases==================
+img_scale = _base_.img_scale
+pre_transform = _base_.pre_transform
+last_transform = _base_.last_transform
+
+model = dict(
+ backbone=dict(
+ deepen_factor=deepen_factor,
+ widen_factor=widen_factor,
+ ),
+ neck=dict(
+ deepen_factor=deepen_factor,
+ widen_factor=widen_factor,
+ ),
+ bbox_head=dict(head_module=dict(widen_factor=widen_factor)))
+
+mosaic_affine_transform = [
+ dict(
+ type='Mosaic',
+ img_scale=img_scale,
+ pad_val=114.0,
+ pre_transform=pre_transform),
+ dict(type='YOLOv5CopyPaste', prob=copypaste_prob),
+ dict(
+ type='YOLOv5RandomAffine',
+ max_rotate_degree=0.0,
+ max_shear_degree=0.0,
+ max_aspect_ratio=100.,
+ scaling_ratio_range=(1 - affine_scale, 1 + affine_scale),
+ # img_scale is (width, height)
+ border=(-img_scale[0] // 2, -img_scale[1] // 2),
+ border_val=(114, 114, 114),
+ min_area_ratio=_base_.min_area_ratio,
+ use_mask_refine=_base_.use_mask2refine)
+]
+
+train_pipeline = [
+ *pre_transform, *mosaic_affine_transform,
+ dict(
+ type='YOLOv5MixUp',
+ prob=mixup_prob,
+ pre_transform=[*pre_transform, *mosaic_affine_transform]),
+ *last_transform
+]
+
+train_pipeline_stage2 = [
+ *pre_transform,
+ dict(type='YOLOv5KeepRatioResize', scale=img_scale),
+ dict(
+ type='LetterResize',
+ scale=img_scale,
+ allow_scale_up=True,
+ pad_val=dict(img=114.0)),
+ dict(
+ type='YOLOv5RandomAffine',
+ max_rotate_degree=0.0,
+ max_shear_degree=0.0,
+ scaling_ratio_range=(1 - affine_scale, 1 + affine_scale),
+ max_aspect_ratio=_base_.max_aspect_ratio,
+ border_val=(114, 114, 114),
+ min_area_ratio=_base_.min_area_ratio,
+ use_mask_refine=_base_.use_mask2refine), *last_transform
+]
+
+train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
+_base_.custom_hooks[1].switch_pipeline = train_pipeline_stage2
diff --git a/configs/yolov5/yolov5u/yolov5u_m_syncbn_fast_8xb16-300e_coco.py b/configs/yolov5/yolov5u/yolov5u_m_syncbn_fast_8xb16-300e_coco.py
new file mode 100644
index 00000000..0cfb3324
--- /dev/null
+++ b/configs/yolov5/yolov5u/yolov5u_m_syncbn_fast_8xb16-300e_coco.py
@@ -0,0 +1,18 @@
+_base_ = './yolov5u_s_syncbn_fast_8xb16-300e_coco.py'
+
+# ========================modified parameters======================
+# TODO: Update the training hyperparameters
+deepen_factor = 0.67
+widen_factor = 0.75
+
+# =======================Unmodified in most cases==================
+model = dict(
+ backbone=dict(
+ deepen_factor=deepen_factor,
+ widen_factor=widen_factor,
+ ),
+ neck=dict(
+ deepen_factor=deepen_factor,
+ widen_factor=widen_factor,
+ ),
+ bbox_head=dict(head_module=dict(widen_factor=widen_factor)))
diff --git a/configs/yolov5/yolov5u/yolov5u_n_mask-refine_syncbn_fast_8xb16-300e_coco.py b/configs/yolov5/yolov5u/yolov5u_n_mask-refine_syncbn_fast_8xb16-300e_coco.py
new file mode 100644
index 00000000..1ca21b65
--- /dev/null
+++ b/configs/yolov5/yolov5u/yolov5u_n_mask-refine_syncbn_fast_8xb16-300e_coco.py
@@ -0,0 +1,20 @@
+_base_ = './yolov5u_s_mask-refine_syncbn_fast_8xb16-300e_coco.py'
+
+# This config will refine bbox by mask while loading annotations and
+# transforming after `YOLOv5RandomAffine`
+
+# ========================modified parameters======================
+deepen_factor = 0.33
+widen_factor = 0.25
+
+# ===============================Unmodified in most cases====================
+model = dict(
+ backbone=dict(
+ deepen_factor=deepen_factor,
+ widen_factor=widen_factor,
+ ),
+ neck=dict(
+ deepen_factor=deepen_factor,
+ widen_factor=widen_factor,
+ ),
+ bbox_head=dict(head_module=dict(widen_factor=widen_factor)))
diff --git a/configs/yolov5/yolov5u/yolov5u_n_syncbn_fast_8xb16-300e_coco.py b/configs/yolov5/yolov5u/yolov5u_n_syncbn_fast_8xb16-300e_coco.py
new file mode 100644
index 00000000..ad6a9f2e
--- /dev/null
+++ b/configs/yolov5/yolov5u/yolov5u_n_syncbn_fast_8xb16-300e_coco.py
@@ -0,0 +1,17 @@
+_base_ = './yolov5u_s_syncbn_fast_8xb16-300e_coco.py'
+
+# ========================modified parameters======================
+deepen_factor = 0.33
+widen_factor = 0.25
+
+# =======================Unmodified in most cases==================
+model = dict(
+ backbone=dict(
+ deepen_factor=deepen_factor,
+ widen_factor=widen_factor,
+ ),
+ neck=dict(
+ deepen_factor=deepen_factor,
+ widen_factor=widen_factor,
+ ),
+ bbox_head=dict(head_module=dict(widen_factor=widen_factor)))
diff --git a/configs/yolov5/yolov5u/yolov5u_s_mask-refine_syncbn_fast_8xb16-300e_coco.py b/configs/yolov5/yolov5u/yolov5u_s_mask-refine_syncbn_fast_8xb16-300e_coco.py
new file mode 100644
index 00000000..5159c428
--- /dev/null
+++ b/configs/yolov5/yolov5u/yolov5u_s_mask-refine_syncbn_fast_8xb16-300e_coco.py
@@ -0,0 +1,80 @@
+_base_ = './yolov5u_s_syncbn_fast_8xb16-300e_coco.py'
+
+# This config will refine bbox by mask while loading annotations and
+# transforming after `YOLOv5RandomAffine`
+
+# ========================modified parameters======================
+use_mask2refine = True
+min_area_ratio = 0.01 # YOLOv5RandomAffine
+
+# ===============================Unmodified in most cases====================
+pre_transform = [
+ dict(type='LoadImageFromFile', file_client_args=_base_.file_client_args),
+ dict(
+ type='LoadAnnotations',
+ with_bbox=True,
+ with_mask=True,
+ mask2bbox=use_mask2refine)
+]
+
+last_transform = [
+ # Delete gt_masks to avoid more computation
+ dict(type='RemoveDataElement', keys=['gt_masks']),
+ dict(
+ type='mmdet.Albu',
+ transforms=_base_.albu_train_transforms,
+ bbox_params=dict(
+ type='BboxParams',
+ format='pascal_voc',
+ label_fields=['gt_bboxes_labels', 'gt_ignore_flags']),
+ keymap={
+ 'img': 'image',
+ 'gt_bboxes': 'bboxes'
+ }),
+ dict(type='YOLOv5HSVRandomAug'),
+ dict(type='mmdet.RandomFlip', prob=0.5),
+ dict(
+ type='mmdet.PackDetInputs',
+ meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
+ 'flip_direction'))
+]
+
+train_pipeline = [
+ *pre_transform,
+ dict(
+ type='Mosaic',
+ img_scale=_base_.img_scale,
+ pad_val=114.0,
+ pre_transform=pre_transform),
+ dict(
+ type='YOLOv5RandomAffine',
+ max_rotate_degree=0.0,
+ max_shear_degree=0.0,
+ scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale),
+ # img_scale is (width, height)
+ border=(-_base_.img_scale[0] // 2, -_base_.img_scale[1] // 2),
+ border_val=(114, 114, 114),
+ min_area_ratio=min_area_ratio,
+ use_mask_refine=use_mask2refine),
+ *last_transform
+]
+
+train_pipeline_stage2 = [
+ *pre_transform,
+ dict(type='YOLOv5KeepRatioResize', scale=_base_.img_scale),
+ dict(
+ type='LetterResize',
+ scale=_base_.img_scale,
+ allow_scale_up=True,
+ pad_val=dict(img=114.0)),
+ dict(
+ type='YOLOv5RandomAffine',
+ max_rotate_degree=0.0,
+ max_shear_degree=0.0,
+ scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale),
+ max_aspect_ratio=_base_.max_aspect_ratio,
+ border_val=(114, 114, 114)), *last_transform
+]
+
+train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
+_base_.custom_hooks[1].switch_pipeline = train_pipeline_stage2
diff --git a/configs/yolov5/yolov5u/yolov5u_s_syncbn_fast_8xb16-300e_coco.py b/configs/yolov5/yolov5u/yolov5u_s_syncbn_fast_8xb16-300e_coco.py
new file mode 100644
index 00000000..17635aca
--- /dev/null
+++ b/configs/yolov5/yolov5u/yolov5u_s_syncbn_fast_8xb16-300e_coco.py
@@ -0,0 +1,326 @@
+_base_ = ['../../_base_/default_runtime.py', '../../_base_/det_p5_tta.py']
+
+# ========================Frequently modified parameters======================
+# -----data related-----
+data_root = 'data/coco/' # Root path of data
+# Path of train annotation file
+train_ann_file = 'annotations/instances_train2017.json'
+train_data_prefix = 'train2017/' # Prefix of train image path
+# Path of val annotation file
+val_ann_file = 'annotations/instances_val2017.json'
+val_data_prefix = 'val2017/' # Prefix of val image path
+
+num_classes = 80 # Number of classes for classification
+# Batch size of a single GPU during training
+train_batch_size_per_gpu = 16
+# Worker to pre-fetch data for each single GPU during training
+train_num_workers = 8
+# persistent_workers must be False if num_workers is 0
+persistent_workers = True
+
+# -----train val related-----
+# Base learning rate for optim_wrapper. Corresponding to 8xb16=128 bs
+base_lr = 0.01
+max_epochs = 300 # Maximum training epochs
+# Disable mosaic augmentation for final 10 epochs (stage 2)
+close_mosaic_epochs = 10
+
+model_test_cfg = dict(
+ # The config of multi-label for multi-class prediction.
+ multi_label=True,
+ # The number of boxes before NMS
+ nms_pre=30000,
+ score_thr=0.001, # Threshold to filter out boxes.
+ nms=dict(type='nms', iou_threshold=0.7), # NMS type and threshold
+ max_per_img=300) # Max number of detections of each image
+
+# ========================Possible modified parameters========================
+# -----data related-----
+img_scale = (640, 640) # width, height
+# Dataset type, this will be used to define the dataset
+dataset_type = 'YOLOv5CocoDataset'
+# Batch size of a single GPU during validation
+val_batch_size_per_gpu = 1
+# Worker to pre-fetch data for each single GPU during validation
+val_num_workers = 2
+
+# Config of batch shapes. Only on val.
+# It means not used if batch_shapes_cfg is None.
+batch_shapes_cfg = dict(
+ type='BatchShapePolicy',
+ batch_size=val_batch_size_per_gpu,
+ img_size=img_scale[0],
+ # The image scale of padding should be divided by pad_size_divisor
+ size_divisor=32,
+ # Additional paddings for pixel scale
+ extra_pad_ratio=0.5)
+
+# -----model related-----
+# The scaling factor that controls the depth of the network structure
+deepen_factor = 0.33
+# The scaling factor that controls the width of the network structure
+widen_factor = 0.5
+# Strides of multi-scale prior box
+strides = [8, 16, 32]
+num_det_layers = 3 # The number of model output scales
+norm_cfg = dict(type='BN', momentum=0.03, eps=0.001) # Normalization config
+
+# -----train val related-----
+tal_topk = 10 # Number of bbox selected in each level
+tal_alpha = 0.5 # A Hyper-parameter related to alignment_metrics
+tal_beta = 6.0 # A Hyper-parameter related to alignment_metrics
+
+affine_scale = 0.5 # YOLOv5RandomAffine scaling ratio
+# YOLOv5RandomAffine aspect ratio of width and height thres to filter bboxes
+max_aspect_ratio = 100
+# TODO: Automatically scale loss_weight based on number of detection layers
+loss_cls_weight = 0.5
+loss_bbox_weight = 7.5
+# Since the dfloss is implemented differently in the official
+# and mmdet, we're going to divide loss_weight by 4.
+loss_dfl_weight = 1.5 / 4
+lr_factor = 0.01 # Learning rate scaling factor
+weight_decay = 0.001
+# Save model checkpoint and validation intervals
+save_checkpoint_intervals = 10
+# The maximum checkpoints to keep.
+max_keep_ckpts = 3
+# Single-scale training is recommended to
+# be turned on, which can speed up training.
+env_cfg = dict(cudnn_benchmark=True)
+
+# ===============================Unmodified in most cases====================
+model = dict(
+ type='YOLODetector',
+ data_preprocessor=dict(
+ type='YOLOv5DetDataPreprocessor',
+ mean=[0., 0., 0.],
+ std=[255., 255., 255.],
+ bgr_to_rgb=True),
+ backbone=dict(
+ type='YOLOv5CSPDarknet',
+ deepen_factor=deepen_factor,
+ widen_factor=widen_factor,
+ norm_cfg=norm_cfg,
+ act_cfg=dict(type='SiLU', inplace=True)),
+ neck=dict(
+ type='YOLOv5PAFPN',
+ deepen_factor=deepen_factor,
+ widen_factor=widen_factor,
+ in_channels=[256, 512, 1024],
+ out_channels=[256, 512, 1024],
+ num_csp_blocks=3,
+ norm_cfg=norm_cfg,
+ act_cfg=dict(type='SiLU', inplace=True)),
+ bbox_head=dict(
+ type='YOLOv8Head',
+ head_module=dict(
+ type='YOLOv8HeadModule',
+ num_classes=num_classes,
+ in_channels=[256, 512, 1024],
+ widen_factor=widen_factor,
+ reg_max=16,
+ norm_cfg=norm_cfg,
+ act_cfg=dict(type='SiLU', inplace=True),
+ featmap_strides=strides),
+ prior_generator=dict(
+ type='mmdet.MlvlPointGenerator', offset=0.5, strides=strides),
+ bbox_coder=dict(type='DistancePointBBoxCoder'),
+ # scaled based on number of detection layers
+ loss_cls=dict(
+ type='mmdet.CrossEntropyLoss',
+ use_sigmoid=True,
+ reduction='none',
+ loss_weight=loss_cls_weight),
+ loss_bbox=dict(
+ type='IoULoss',
+ iou_mode='ciou',
+ bbox_format='xyxy',
+ reduction='sum',
+ loss_weight=loss_bbox_weight,
+ return_iou=False),
+ loss_dfl=dict(
+ type='mmdet.DistributionFocalLoss',
+ reduction='mean',
+ loss_weight=loss_dfl_weight)),
+ train_cfg=dict(
+ assigner=dict(
+ type='BatchTaskAlignedAssigner',
+ num_classes=num_classes,
+ use_ciou=True,
+ topk=tal_topk,
+ alpha=tal_alpha,
+ beta=tal_beta,
+ eps=1e-9)),
+ test_cfg=model_test_cfg)
+
+albu_train_transforms = [
+ dict(type='Blur', p=0.01),
+ dict(type='MedianBlur', p=0.01),
+ dict(type='ToGray', p=0.01),
+ dict(type='CLAHE', p=0.01)
+]
+
+pre_transform = [
+ dict(type='LoadImageFromFile', file_client_args=_base_.file_client_args),
+ dict(type='LoadAnnotations', with_bbox=True)
+]
+
+last_transform = [
+ dict(
+ type='mmdet.Albu',
+ transforms=albu_train_transforms,
+ bbox_params=dict(
+ type='BboxParams',
+ format='pascal_voc',
+ label_fields=['gt_bboxes_labels', 'gt_ignore_flags']),
+ keymap={
+ 'img': 'image',
+ 'gt_bboxes': 'bboxes'
+ }),
+ dict(type='YOLOv5HSVRandomAug'),
+ dict(type='mmdet.RandomFlip', prob=0.5),
+ dict(
+ type='mmdet.PackDetInputs',
+ meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
+ 'flip_direction'))
+]
+
+train_pipeline = [
+ *pre_transform,
+ dict(
+ type='Mosaic',
+ img_scale=img_scale,
+ pad_val=114.0,
+ pre_transform=pre_transform),
+ dict(
+ type='YOLOv5RandomAffine',
+ max_rotate_degree=0.0,
+ max_shear_degree=0.0,
+ scaling_ratio_range=(1 - affine_scale, 1 + affine_scale),
+ max_aspect_ratio=max_aspect_ratio,
+ # img_scale is (width, height)
+ border=(-img_scale[0] // 2, -img_scale[1] // 2),
+ border_val=(114, 114, 114)),
+ *last_transform
+]
+
+train_pipeline_stage2 = [
+ *pre_transform,
+ dict(type='YOLOv5KeepRatioResize', scale=img_scale),
+ dict(
+ type='LetterResize',
+ scale=img_scale,
+ allow_scale_up=True,
+ pad_val=dict(img=114.0)),
+ dict(
+ type='YOLOv5RandomAffine',
+ max_rotate_degree=0.0,
+ max_shear_degree=0.0,
+ scaling_ratio_range=(1 - affine_scale, 1 + affine_scale),
+ max_aspect_ratio=max_aspect_ratio,
+ border_val=(114, 114, 114)), *last_transform
+]
+
+train_dataloader = dict(
+ batch_size=train_batch_size_per_gpu,
+ num_workers=train_num_workers,
+ persistent_workers=persistent_workers,
+ pin_memory=True,
+ sampler=dict(type='DefaultSampler', shuffle=True),
+ collate_fn=dict(type='yolov5_collate'),
+ dataset=dict(
+ type=dataset_type,
+ data_root=data_root,
+ ann_file=train_ann_file,
+ data_prefix=dict(img=train_data_prefix),
+ filter_cfg=dict(filter_empty_gt=False, min_size=32),
+ pipeline=train_pipeline))
+
+test_pipeline = [
+ dict(type='LoadImageFromFile', file_client_args=_base_.file_client_args),
+ dict(type='YOLOv5KeepRatioResize', scale=img_scale),
+ dict(
+ type='LetterResize',
+ scale=img_scale,
+ allow_scale_up=False,
+ pad_val=dict(img=114)),
+ dict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'),
+ dict(
+ type='mmdet.PackDetInputs',
+ meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
+ 'scale_factor', 'pad_param'))
+]
+
+val_dataloader = dict(
+ batch_size=val_batch_size_per_gpu,
+ num_workers=val_num_workers,
+ persistent_workers=persistent_workers,
+ pin_memory=True,
+ drop_last=False,
+ sampler=dict(type='DefaultSampler', shuffle=False),
+ dataset=dict(
+ type=dataset_type,
+ data_root=data_root,
+ test_mode=True,
+ data_prefix=dict(img=val_data_prefix),
+ ann_file=val_ann_file,
+ pipeline=test_pipeline,
+ batch_shapes_cfg=batch_shapes_cfg))
+
+test_dataloader = val_dataloader
+
+param_scheduler = None
+optim_wrapper = dict(
+ type='OptimWrapper',
+ optimizer=dict(
+ type='SGD',
+ lr=base_lr,
+ momentum=0.937,
+ weight_decay=weight_decay,
+ nesterov=True,
+ batch_size_per_gpu=train_batch_size_per_gpu),
+ constructor='YOLOv5OptimizerConstructor')
+
+default_hooks = dict(
+ param_scheduler=dict(
+ type='YOLOv5ParamSchedulerHook',
+ scheduler_type='linear',
+ lr_factor=lr_factor,
+ max_epochs=max_epochs,
+ warmup_epochs=3.0,
+ warmup_momentum=0.8,
+ warmup_bias_lr=0.1),
+ checkpoint=dict(
+ type='CheckpointHook',
+ interval=save_checkpoint_intervals,
+ save_best='auto',
+ max_keep_ckpts=max_keep_ckpts))
+
+custom_hooks = [
+ dict(
+ type='EMAHook',
+ ema_type='ExpMomentumEMA',
+ momentum=0.0001,
+ update_buffers=True,
+ strict_load=False,
+ priority=49),
+ dict(
+ type='mmdet.PipelineSwitchHook',
+ switch_epoch=max_epochs - close_mosaic_epochs,
+ switch_pipeline=train_pipeline_stage2)
+]
+
+val_evaluator = dict(
+ type='mmdet.CocoMetric',
+ proposal_nums=(100, 1, 10),
+ ann_file=data_root + val_ann_file,
+ metric='bbox')
+test_evaluator = val_evaluator
+
+train_cfg = dict(
+ type='EpochBasedTrainLoop',
+ max_epochs=max_epochs,
+ val_interval=save_checkpoint_intervals)
+val_cfg = dict(type='ValLoop')
+test_cfg = dict(type='TestLoop')
diff --git a/configs/yolov5/yolov5u/yolov5u_x_mask-refine_syncbn_fast_8xb16-300e_coco.py b/configs/yolov5/yolov5u/yolov5u_x_mask-refine_syncbn_fast_8xb16-300e_coco.py
new file mode 100644
index 00000000..33092aa6
--- /dev/null
+++ b/configs/yolov5/yolov5u/yolov5u_x_mask-refine_syncbn_fast_8xb16-300e_coco.py
@@ -0,0 +1,17 @@
+_base_ = './yolov5u_l_mask-refine_syncbn_fast_8xb16-300e_coco.py'
+
+# ========================modified parameters======================
+deepen_factor = 1.33
+widen_factor = 1.25
+
+# =======================Unmodified in most cases==================
+model = dict(
+ backbone=dict(
+ deepen_factor=deepen_factor,
+ widen_factor=widen_factor,
+ ),
+ neck=dict(
+ deepen_factor=deepen_factor,
+ widen_factor=widen_factor,
+ ),
+ bbox_head=dict(head_module=dict(widen_factor=widen_factor)))
diff --git a/configs/yolov5/yolov5u/yolov5u_x_syncbn_fast_8xb16-300e_coco.py b/configs/yolov5/yolov5u/yolov5u_x_syncbn_fast_8xb16-300e_coco.py
new file mode 100644
index 00000000..fd471fd4
--- /dev/null
+++ b/configs/yolov5/yolov5u/yolov5u_x_syncbn_fast_8xb16-300e_coco.py
@@ -0,0 +1,18 @@
+_base_ = './yolov5u_l_syncbn_fast_8xb16-300e_coco.py'
+
+# ========================modified parameters======================
+# TODO: Update the training hyperparameters
+deepen_factor = 1.33
+widen_factor = 1.25
+
+# =======================Unmodified in most cases==================
+model = dict(
+ backbone=dict(
+ deepen_factor=deepen_factor,
+ widen_factor=widen_factor,
+ ),
+ neck=dict(
+ deepen_factor=deepen_factor,
+ widen_factor=widen_factor,
+ ),
+ bbox_head=dict(head_module=dict(widen_factor=widen_factor)))
diff --git a/configs/yolov6/README.md b/configs/yolov6/README.md
index 4dac37f4..7ecda276 100644
--- a/configs/yolov6/README.md
+++ b/configs/yolov6/README.md
@@ -26,13 +26,13 @@ YOLOv6-l model structure
### COCO
-| Backbone | Arch | Size | Epoch | SyncBN | AMP | Mem (GB) | Box AP | Config | Download |
-| :------: | :--: | :--: | :---: | :----: | :-: | :------: | :----: | :---------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
-| YOLOv6-n | P5 | 640 | 400 | Yes | Yes | 6.04 | 36.2 | [config](../yolov6/yolov6_n_syncbn_fast_8xb32-400e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov6/yolov6_n_syncbn_fast_8xb32-400e_coco/yolov6_n_syncbn_fast_8xb32-400e_coco_20221030_202726-d99b2e82.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov6/yolov6_n_syncbn_fast_8xb32-400e_coco/yolov6_n_syncbn_fast_8xb32-400e_coco_20221030_202726.log.json) |
-| YOLOv6-t | P5 | 640 | 400 | Yes | Yes | 8.13 | 41.0 | [config](../yolov6/yolov6_t_syncbn_fast_8xb32-400e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov6/yolov6_t_syncbn_fast_8xb32-400e_coco/yolov6_t_syncbn_fast_8xb32-400e_coco_20221030_143755-cf0d278f.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov6/yolov6_t_syncbn_fast_8xb32-400e_coco/yolov6_t_syncbn_fast_8xb32-400e_coco_20221030_143755.log.json) |
-| YOLOv6-s | P5 | 640 | 400 | Yes | Yes | 8.88 | 44.0 | [config](../yolov6/yolov6_s_syncbn_fast_8xb32-400e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov6/yolov6_s_syncbn_fast_8xb32-400e_coco/yolov6_s_syncbn_fast_8xb32-400e_coco_20221102_203035-932e1d91.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov6/yolov6_s_syncbn_fast_8xb32-400e_coco/yolov6_s_syncbn_fast_8xb32-400e_coco_20221102_203035.log.json) |
-| YOLOv6-m | P5 | 640 | 300 | Yes | Yes | 16.69 | 48.4 | [config](../yolov6/yolov6_m_syncbn_fast_8xb32-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov6/yolov6_m_syncbn_fast_8xb32-300e_coco/yolov6_m_syncbn_fast_8xb32-300e_coco_20221109_182658-85bda3f4.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov6/yolov6_m_syncbn_fast_8xb32-300e_coco/yolov6_m_syncbn_fast_8xb32-300e_coco_20221109_182658.log.json) |
-| YOLOv6-l | P5 | 640 | 300 | Yes | Yes | 20.86 | 51.0 | [config](../yolov6/yolov6_l_syncbn_fast_8xb32-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov6/yolov6_l_syncbn_fast_8xb32-300e_coco/yolov6_l_syncbn_fast_8xb32-300e_coco_20221109_183156-91e3c447.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov6/yolov6_l_syncbn_fast_8xb32-300e_coco/yolov6_l_syncbn_fast_8xb32-300e_coco_20221109_183156.log.json) |
+| Backbone | Arch | Size | Epoch | SyncBN | AMP | Mem (GB) | Box AP | Config | Download |
+| :------: | :--: | :--: | :---: | :----: | :-: | :------: | :----: | :-------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
+| YOLOv6-n | P5 | 640 | 400 | Yes | Yes | 6.04 | 36.2 | [config](./yolov6_n_syncbn_fast_8xb32-400e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov6/yolov6_n_syncbn_fast_8xb32-400e_coco/yolov6_n_syncbn_fast_8xb32-400e_coco_20221030_202726-d99b2e82.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov6/yolov6_n_syncbn_fast_8xb32-400e_coco/yolov6_n_syncbn_fast_8xb32-400e_coco_20221030_202726.log.json) |
+| YOLOv6-t | P5 | 640 | 400 | Yes | Yes | 8.13 | 41.0 | [config](./yolov6_t_syncbn_fast_8xb32-400e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov6/yolov6_t_syncbn_fast_8xb32-400e_coco/yolov6_t_syncbn_fast_8xb32-400e_coco_20221030_143755-cf0d278f.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov6/yolov6_t_syncbn_fast_8xb32-400e_coco/yolov6_t_syncbn_fast_8xb32-400e_coco_20221030_143755.log.json) |
+| YOLOv6-s | P5 | 640 | 400 | Yes | Yes | 8.88 | 44.0 | [config](./yolov6_s_syncbn_fast_8xb32-400e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov6/yolov6_s_syncbn_fast_8xb32-400e_coco/yolov6_s_syncbn_fast_8xb32-400e_coco_20221102_203035-932e1d91.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov6/yolov6_s_syncbn_fast_8xb32-400e_coco/yolov6_s_syncbn_fast_8xb32-400e_coco_20221102_203035.log.json) |
+| YOLOv6-m | P5 | 640 | 300 | Yes | Yes | 16.69 | 48.4 | [config](./yolov6_m_syncbn_fast_8xb32-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov6/yolov6_m_syncbn_fast_8xb32-300e_coco/yolov6_m_syncbn_fast_8xb32-300e_coco_20221109_182658-85bda3f4.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov6/yolov6_m_syncbn_fast_8xb32-300e_coco/yolov6_m_syncbn_fast_8xb32-300e_coco_20221109_182658.log.json) |
+| YOLOv6-l | P5 | 640 | 300 | Yes | Yes | 20.86 | 51.0 | [config](./yolov6_l_syncbn_fast_8xb32-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov6/yolov6_l_syncbn_fast_8xb32-300e_coco/yolov6_l_syncbn_fast_8xb32-300e_coco_20221109_183156-91e3c447.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov6/yolov6_l_syncbn_fast_8xb32-300e_coco/yolov6_l_syncbn_fast_8xb32-300e_coco_20221109_183156.log.json) |
**Note**:
diff --git a/configs/yolov7/README.md b/configs/yolov7/README.md
index e4f81261..17003144 100644
--- a/configs/yolov7/README.md
+++ b/configs/yolov7/README.md
@@ -21,13 +21,13 @@ YOLOv7-l-P5 model structure
### COCO
-| Backbone | Arch | Size | SyncBN | AMP | Mem (GB) | Box AP | Config | Download |
-| :---------: | :--: | :--: | :----: | :-: | :------: | :----: | :----------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
-| YOLOv7-tiny | P5 | 640 | Yes | Yes | 2.7 | 37.5 | [config](https://github.com/open-mmlab/mmyolo/tree/main/configs/yolov7/yolov7_tiny_syncbn_fast_8x16b-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov7/yolov7_tiny_syncbn_fast_8x16b-300e_coco/yolov7_tiny_syncbn_fast_8x16b-300e_coco_20221126_102719-0ee5bbdf.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov7/yolov7_tiny_syncbn_fast_8x16b-300e_coco/yolov7_tiny_syncbn_fast_8x16b-300e_coco_20221126_102719.log.json) |
-| YOLOv7-l | P5 | 640 | Yes | Yes | 10.3 | 50.9 | [config](https://github.com/open-mmlab/mmyolo/tree/main/configs/yolov7/yolov7_l_syncbn_fast_8x16b-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov7/yolov7_l_syncbn_fast_8x16b-300e_coco/yolov7_l_syncbn_fast_8x16b-300e_coco_20221123_023601-8113c0eb.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov7/yolov7_l_syncbn_fast_8x16b-300e_coco/yolov7_l_syncbn_fast_8x16b-300e_coco_20221123_023601.log.json) |
-| YOLOv7-x | P5 | 640 | Yes | Yes | 13.7 | 52.8 | [config](https://github.com/open-mmlab/mmyolo/tree/main/configs/yolov7/yolov7_x_syncbn_fast_8x16b-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov7/yolov7_x_syncbn_fast_8x16b-300e_coco/yolov7_x_syncbn_fast_8x16b-300e_coco_20221124_215331-ef949a68.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov7/yolov7_x_syncbn_fast_8x16b-300e_coco/yolov7_x_syncbn_fast_8x16b-300e_coco_20221124_215331.log.json) |
-| YOLOv7-w | P6 | 1280 | Yes | Yes | 27.0 | 54.1 | [config](https://github.com/open-mmlab/mmyolo/tree/main/configs/yolov7/yolov7_w-p6_syncbn_fast_8x16b-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov7/yolov7_w-p6_syncbn_fast_8x16b-300e_coco/yolov7_w-p6_syncbn_fast_8x16b-300e_coco_20221123_053031-a68ef9d2.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov7/yolov7_w-p6_syncbn_fast_8x16b-300e_coco/yolov7_w-p6_syncbn_fast_8x16b-300e_coco_20221123_053031.log.json) |
-| YOLOv7-e | P6 | 1280 | Yes | Yes | 42.5 | 55.1 | [config](https://github.com/open-mmlab/mmyolo/tree/main/configs/yolov7/yolov7_e-p6_syncbn_fast_8x16b-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov7/yolov7_e-p6_syncbn_fast_8x16b-300e_coco/yolov7_e-p6_syncbn_fast_8x16b-300e_coco_20221126_102636-34425033.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov7/yolov7_e-p6_syncbn_fast_8x16b-300e_coco/yolov7_e-p6_syncbn_fast_8x16b-300e_coco_20221126_102636.log.json) |
+| Backbone | Arch | Size | SyncBN | AMP | Mem (GB) | Box AP | Config | Download |
+| :---------: | :--: | :--: | :----: | :-: | :------: | :----: | :----------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
+| YOLOv7-tiny | P5 | 640 | Yes | Yes | 2.7 | 37.5 | [config](./yolov7_tiny_syncbn_fast_8x16b-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov7/yolov7_tiny_syncbn_fast_8x16b-300e_coco/yolov7_tiny_syncbn_fast_8x16b-300e_coco_20221126_102719-0ee5bbdf.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov7/yolov7_tiny_syncbn_fast_8x16b-300e_coco/yolov7_tiny_syncbn_fast_8x16b-300e_coco_20221126_102719.log.json) |
+| YOLOv7-l | P5 | 640 | Yes | Yes | 10.3 | 50.9 | [config](./yolov7_l_syncbn_fast_8x16b-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov7/yolov7_l_syncbn_fast_8x16b-300e_coco/yolov7_l_syncbn_fast_8x16b-300e_coco_20221123_023601-8113c0eb.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov7/yolov7_l_syncbn_fast_8x16b-300e_coco/yolov7_l_syncbn_fast_8x16b-300e_coco_20221123_023601.log.json) |
+| YOLOv7-x | P5 | 640 | Yes | Yes | 13.7 | 52.8 | [config](./yolov7_x_syncbn_fast_8x16b-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov7/yolov7_x_syncbn_fast_8x16b-300e_coco/yolov7_x_syncbn_fast_8x16b-300e_coco_20221124_215331-ef949a68.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov7/yolov7_x_syncbn_fast_8x16b-300e_coco/yolov7_x_syncbn_fast_8x16b-300e_coco_20221124_215331.log.json) |
+| YOLOv7-w | P6 | 1280 | Yes | Yes | 27.0 | 54.1 | [config](./yolov7_w-p6_syncbn_fast_8x16b-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov7/yolov7_w-p6_syncbn_fast_8x16b-300e_coco/yolov7_w-p6_syncbn_fast_8x16b-300e_coco_20221123_053031-a68ef9d2.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov7/yolov7_w-p6_syncbn_fast_8x16b-300e_coco/yolov7_w-p6_syncbn_fast_8x16b-300e_coco_20221123_053031.log.json) |
+| YOLOv7-e | P6 | 1280 | Yes | Yes | 42.5 | 55.1 | [config](./yolov7_e-p6_syncbn_fast_8x16b-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov7/yolov7_e-p6_syncbn_fast_8x16b-300e_coco/yolov7_e-p6_syncbn_fast_8x16b-300e_coco_20221126_102636-34425033.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov7/yolov7_e-p6_syncbn_fast_8x16b-300e_coco/yolov7_e-p6_syncbn_fast_8x16b-300e_coco_20221126_102636.log.json) |
**Note**:
In the official YOLOv7 code, the `random_perspective` data augmentation in COCO object detection task training uses mask annotation information, which leads to higher performance. Object detection should not use mask annotation, so only box annotation information is used in `MMYOLO`. We will use the mask annotation information in the instance segmentation task.
diff --git a/configs/yolov8/README.md b/configs/yolov8/README.md
index 25899768..766aa991 100644
--- a/configs/yolov8/README.md
+++ b/configs/yolov8/README.md
@@ -20,18 +20,18 @@ YOLOv8-P5 model structure
### COCO
-| Backbone | Arch | size | Mask Refine | SyncBN | AMP | Mem (GB) | box AP | TTA box AP | Config | Download |
-| :------: | :--: | :--: | :---------: | :----: | :-: | :------: | :---------: | :--------: | :---------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
-| YOLOv8-n | P5 | 640 | No | Yes | Yes | 2.8 | 37.2 | | [config](../yolov8/yolov8_n_syncbn_fast_8xb16-500e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_n_syncbn_fast_8xb16-500e_coco/yolov8_n_syncbn_fast_8xb16-500e_coco_20230114_131804-88c11cdb.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_n_syncbn_fast_8xb16-500e_coco/yolov8_n_syncbn_fast_8xb16-500e_coco_20230114_131804.log.json) |
-| YOLOv8-n | P5 | 640 | Yes | Yes | Yes | 2.5 | 37.4 (+0.2) | 39.9 | [config](../yolov8/yolov8_n_mask-refine_syncbn_fast_8xb16-500e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_n_mask-refine_syncbn_fast_8xb16-500e_coco/yolov8_n_mask-refine_syncbn_fast_8xb16-500e_coco_20230216_101206-b975b1cd.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_n_mask-refine_syncbn_fast_8xb16-500e_coco/yolov8_n_mask-refine_syncbn_fast_8xb16-500e_coco_20230216_101206.log.json) |
-| YOLOv8-s | P5 | 640 | No | Yes | Yes | 4.0 | 44.2 | | [config](../yolov8/yolov8_s_syncbn_fast_8xb16-500e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_s_syncbn_fast_8xb16-500e_coco/yolov8_s_syncbn_fast_8xb16-500e_coco_20230117_180101-5aa5f0f1.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_s_syncbn_fast_8xb16-500e_coco/yolov8_s_syncbn_fast_8xb16-500e_coco_20230117_180101.log.json) |
-| YOLOv8-s | P5 | 640 | Yes | Yes | Yes | 4.0 | 45.1 (+0.9) | 46.8 | [config](../yolov8/yolov8_s_mask-refine_syncbn_fast_8xb16-500e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_s_mask-refine_syncbn_fast_8xb16-500e_coco/yolov8_s_mask-refine_syncbn_fast_8xb16-500e_coco_20230216_095938-ce3c1b3f.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_s_mask-refine_syncbn_fast_8xb16-500e_coco/yolov8_s_mask-refine_syncbn_fast_8xb16-500e_coco_20230216_095938.log.json) |
-| YOLOv8-m | P5 | 640 | No | Yes | Yes | 7.2 | 49.8 | | [config](../yolov8/yolov8_m_syncbn_fast_8xb16-500e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_m_syncbn_fast_8xb16-500e_coco/yolov8_m_syncbn_fast_8xb16-500e_coco_20230115_192200-c22e560a.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_m_syncbn_fast_8xb16-500e_coco/yolov8_m_syncbn_fast_8xb16-500e_coco_20230115_192200.log.json) |
-| YOLOv8-m | P5 | 640 | Yes | Yes | Yes | 7.0 | 50.6 (+0.8) | 52.3 | [config](../yolov8/yolov8_m_mask-refine_syncbn_fast_8xb16-500e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_m_mask-refine_syncbn_fast_8xb16-500e_coco/yolov8_m_mask-refine_syncbn_fast_8xb16-500e_coco_20230216_223400-f40abfcd.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_m_mask-refine_syncbn_fast_8xb16-500e_coco/yolov8_m_mask-refine_syncbn_fast_8xb16-500e_coco_20230216_223400.log.json) |
-| YOLOv8-l | P5 | 640 | No | Yes | Yes | 9.8 | 52.1 | | [config](../yolov8/yolov8_l_syncbn_fast_8xb16-500e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_l_syncbn_fast_8xb16-500e_coco/yolov8_l_syncbn_fast_8xb16-500e_coco_20230217_182526-189611b6.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_l_syncbn_fast_8xb16-500e_coco/yolov8_l_syncbn_fast_8xb16-500e_coco_20230217_182526.log.json) |
-| YOLOv8-l | P5 | 640 | Yes | Yes | Yes | 9.1 | 53.0 (+0.9) | 54.4 | [config](../yolov8/yolov8_l_mask-refine_syncbn_fast_8xb16-500e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_l_mask-refine_syncbn_fast_8xb16-500e_coco/yolov8_l_mask-refine_syncbn_fast_8xb16-500e_coco_20230217_120100-5881dec4.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_l_mask-refine_syncbn_fast_8xb16-500e_coco/yolov8_l_mask-refine_syncbn_fast_8xb16-500e_coco_20230217_120100.log.json) |
-| YOLOv8-x | P5 | 640 | No | Yes | Yes | 12.2 | 52.7 | | [config](../yolov8/yolov8_x_syncbn_fast_8xb16-500e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_x_syncbn_fast_8xb16-500e_coco/yolov8_x_syncbn_fast_8xb16-500e_coco_20230218_023338-5674673c.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_x_syncbn_fast_8xb16-500e_coco/yolov8_x_syncbn_fast_8xb16-500e_coco_20230218_023338.log.json) |
-| YOLOv8-x | P5 | 640 | Yes | Yes | Yes | 12.4 | 54.0 (+1.3) | 55.0 | [config](../yolov8/yolov8_x_mask-refine_syncbn_fast_8xb16-500e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_x_mask-refine_syncbn_fast_8xb16-500e_coco/yolov8_x_mask-refine_syncbn_fast_8xb16-500e_coco_20230217_120411-079ca8d1.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_x_mask-refine_syncbn_fast_8xb16-500e_coco/yolov8_x_mask-refine_syncbn_fast_8xb16-500e_coco_20230217_120411.log.json) |
+| Backbone | Arch | size | Mask Refine | SyncBN | AMP | Mem (GB) | box AP | TTA box AP | Config | Download |
+| :------: | :--: | :--: | :---------: | :----: | :-: | :------: | :---------: | :--------: | :-------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
+| YOLOv8-n | P5 | 640 | No | Yes | Yes | 2.8 | 37.2 | | [config](./yolov8_n_syncbn_fast_8xb16-500e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_n_syncbn_fast_8xb16-500e_coco/yolov8_n_syncbn_fast_8xb16-500e_coco_20230114_131804-88c11cdb.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_n_syncbn_fast_8xb16-500e_coco/yolov8_n_syncbn_fast_8xb16-500e_coco_20230114_131804.log.json) |
+| YOLOv8-n | P5 | 640 | Yes | Yes | Yes | 2.5 | 37.4 (+0.2) | 39.9 | [config](./yolov8_n_mask-refine_syncbn_fast_8xb16-500e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_n_mask-refine_syncbn_fast_8xb16-500e_coco/yolov8_n_mask-refine_syncbn_fast_8xb16-500e_coco_20230216_101206-b975b1cd.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_n_mask-refine_syncbn_fast_8xb16-500e_coco/yolov8_n_mask-refine_syncbn_fast_8xb16-500e_coco_20230216_101206.log.json) |
+| YOLOv8-s | P5 | 640 | No | Yes | Yes | 4.0 | 44.2 | | [config](./yolov8_s_syncbn_fast_8xb16-500e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_s_syncbn_fast_8xb16-500e_coco/yolov8_s_syncbn_fast_8xb16-500e_coco_20230117_180101-5aa5f0f1.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_s_syncbn_fast_8xb16-500e_coco/yolov8_s_syncbn_fast_8xb16-500e_coco_20230117_180101.log.json) |
+| YOLOv8-s | P5 | 640 | Yes | Yes | Yes | 4.0 | 45.1 (+0.9) | 46.8 | [config](./yolov8_s_mask-refine_syncbn_fast_8xb16-500e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_s_mask-refine_syncbn_fast_8xb16-500e_coco/yolov8_s_mask-refine_syncbn_fast_8xb16-500e_coco_20230216_095938-ce3c1b3f.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_s_mask-refine_syncbn_fast_8xb16-500e_coco/yolov8_s_mask-refine_syncbn_fast_8xb16-500e_coco_20230216_095938.log.json) |
+| YOLOv8-m | P5 | 640 | No | Yes | Yes | 7.2 | 49.8 | | [config](./yolov8_m_syncbn_fast_8xb16-500e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_m_syncbn_fast_8xb16-500e_coco/yolov8_m_syncbn_fast_8xb16-500e_coco_20230115_192200-c22e560a.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_m_syncbn_fast_8xb16-500e_coco/yolov8_m_syncbn_fast_8xb16-500e_coco_20230115_192200.log.json) |
+| YOLOv8-m | P5 | 640 | Yes | Yes | Yes | 7.0 | 50.6 (+0.8) | 52.3 | [config](./yolov8_m_mask-refine_syncbn_fast_8xb16-500e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_m_mask-refine_syncbn_fast_8xb16-500e_coco/yolov8_m_mask-refine_syncbn_fast_8xb16-500e_coco_20230216_223400-f40abfcd.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_m_mask-refine_syncbn_fast_8xb16-500e_coco/yolov8_m_mask-refine_syncbn_fast_8xb16-500e_coco_20230216_223400.log.json) |
+| YOLOv8-l | P5 | 640 | No | Yes | Yes | 9.8 | 52.1 | | [config](./yolov8_l_syncbn_fast_8xb16-500e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_l_syncbn_fast_8xb16-500e_coco/yolov8_l_syncbn_fast_8xb16-500e_coco_20230217_182526-189611b6.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_l_syncbn_fast_8xb16-500e_coco/yolov8_l_syncbn_fast_8xb16-500e_coco_20230217_182526.log.json) |
+| YOLOv8-l | P5 | 640 | Yes | Yes | Yes | 9.1 | 53.0 (+0.9) | 54.4 | [config](./yolov8_l_mask-refine_syncbn_fast_8xb16-500e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_l_mask-refine_syncbn_fast_8xb16-500e_coco/yolov8_l_mask-refine_syncbn_fast_8xb16-500e_coco_20230217_120100-5881dec4.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_l_mask-refine_syncbn_fast_8xb16-500e_coco/yolov8_l_mask-refine_syncbn_fast_8xb16-500e_coco_20230217_120100.log.json) |
+| YOLOv8-x | P5 | 640 | No | Yes | Yes | 12.2 | 52.7 | | [config](./yolov8_x_syncbn_fast_8xb16-500e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_x_syncbn_fast_8xb16-500e_coco/yolov8_x_syncbn_fast_8xb16-500e_coco_20230218_023338-5674673c.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_x_syncbn_fast_8xb16-500e_coco/yolov8_x_syncbn_fast_8xb16-500e_coco_20230218_023338.log.json) |
+| YOLOv8-x | P5 | 640 | Yes | Yes | Yes | 12.4 | 54.0 (+1.3) | 55.0 | [config](./yolov8_x_mask-refine_syncbn_fast_8xb16-500e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_x_mask-refine_syncbn_fast_8xb16-500e_coco/yolov8_x_mask-refine_syncbn_fast_8xb16-500e_coco_20230217_120411-079ca8d1.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_x_mask-refine_syncbn_fast_8xb16-500e_coco/yolov8_x_mask-refine_syncbn_fast_8xb16-500e_coco_20230217_120411.log.json) |
**Note**
diff --git a/configs/yolox/README.md b/configs/yolox/README.md
index 11f9e307..d54bcf8c 100644
--- a/configs/yolox/README.md
+++ b/configs/yolox/README.md
@@ -19,16 +19,16 @@ YOLOX-l model structure
## 🥳 🚀 Results and Models
-| Backbone | Size | Batch Size | AMP | RTMDet-Hyp | Mem (GB) | Box AP | Config | Download |
-| :--------: | :--: | :--------: | :-: | :--------: | :------: | :---------: | :-----------------------------------------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
-| YOLOX-tiny | 416 | 8xb8 | No | No | 2.8 | 32.7 | [config](https://github.com/open-mmlab/mmyolo/tree/dev/configs/yolox/yolox_tiny_fast_8xb8-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_tiny_8xb8-300e_coco/yolox_tiny_8xb8-300e_coco_20220919_090908-0e40a6fc.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_tiny_8xb8-300e_coco/yolox_tiny_8xb8-300e_coco_20220919_090908.log.json) |
-| YOLOX-tiny | 416 | 8xb32 | Yes | Yes | 4.9 | 34.3 (+1.6) | [config](https://github.com/open-mmlab/mmyolo/tree/dev/configs/yolox/yolox_tiny_fast_8xb32-300e-rtmdet-hyp_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_tiny_fast_8xb32-300e-rtmdet-hyp_coco/yolox_tiny_fast_8xb32-300e-rtmdet-hyp_coco_20230210_143637-4c338102.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_tiny_fast_8xb32-300e-rtmdet-hyp_coco/yolox_tiny_fast_8xb32-300e-rtmdet-hyp_coco_20230210_143637.log.json) |
-| YOLOX-s | 640 | 8xb8 | Yes | No | 2.9 | 40.7 | [config](https://github.com/open-mmlab/mmyolo/tree/dev/configs/yolox/yolox_s_fast_8xb8-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_s_fast_8xb8-300e_coco/yolox_s_fast_8xb8-300e_coco_20230213_142600-2b224d8b.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_s_fast_8xb8-300e_coco/yolox_s_fast_8xb8-300e_coco_20230213_142600.log.json) |
-| YOLOX-s | 640 | 8xb32 | Yes | Yes | 9.8 | 41.9 (+1.2) | [config](https://github.com/open-mmlab/mmyolo/tree/dev/configs/yolox/yolox_s_fast_8xb32-300e-rtmdet-hyp_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_s_fast_8xb32-300e-rtmdet-hyp_coco/yolox_s_fast_8xb32-300e-rtmdet-hyp_coco_20230210_134645-3a8dfbd7.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_s_fast_8xb32-300e-rtmdet-hyp_coco/yolox_s_fast_8xb32-300e-rtmdet-hyp_coco_20230210_134645.log.json) |
-| YOLOX-m | 640 | 8xb8 | Yes | No | 4.9 | 46.9 | [config](https://github.com/open-mmlab/mmyolo/tree/dev/configs/yolox/yolox_m_fast_8xb8-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_m_fast_8xb8-300e_coco/yolox_m_fast_8xb8-300e_coco_20230213_160218-a71a6b25.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_m_fast_8xb8-300e_coco/yolox_m_fast_8xb8-300e_coco_20230213_160218.log.json) |
-| YOLOX-m | 640 | 8xb32 | Yes | Yes | 17.6 | 47.5 (+0.6) | [config](https://github.com/open-mmlab/mmyolo/tree/dev/configs/yolox/yolox_m_fast_8xb32-300e-rtmdet-hyp_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_m_fast_8xb32-300e-rtmdet-hyp_coco/yolox_m_fast_8xb32-300e-rtmdet-hyp_coco_20230210_144328-e657e182.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_m_fast_8xb32-300e-rtmdet-hyp_coco/yolox_m_fast_8xb32-300e-rtmdet-hyp_coco_20230210_144328.log.json) |
-| YOLOX-l | 640 | 8xb8 | Yes | No | 8.0 | 50.1 | [config](https://github.com/open-mmlab/mmyolo/tree/dev/configs/yolox/yolox_l_fast_8xb8-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_l_fast__8xb8-300e_coco/yolox_l_fast_8xb8-300e_coco_20230213_160715-c731eb1c.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_l_fast_8xb8-300e_coco/yolox_l_fast_8xb8-300e_coco_20230213_160715.log.json) |
-| YOLOX-x | 640 | 8xb8 | Yes | No | 9.8 | 51.4 | [config](https://github.com/open-mmlab/mmyolo/tree/dev/configs/yolox/yolox_x_fast_8xb8-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_x_fast_8xb8-300e_coco/yolox_x_fast_8xb8-300e_coco_20230215_133950-1d509fab.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_x_fast_8xb8-300e_coco/yolox_x_fast_8xb8-300e_coco_20230215_133950.log.json) |
+| Backbone | Size | Batch Size | AMP | RTMDet-Hyp | Mem (GB) | Box AP | Config | Download |
+| :--------: | :--: | :--------: | :-: | :--------: | :------: | :---------: | :-------------------------------------------------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
+| YOLOX-tiny | 416 | 8xb8 | No | No | 2.8 | 32.7 | [config](./yolox_tiny_fast_8xb8-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_tiny_8xb8-300e_coco/yolox_tiny_8xb8-300e_coco_20220919_090908-0e40a6fc.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_tiny_8xb8-300e_coco/yolox_tiny_8xb8-300e_coco_20220919_090908.log.json) |
+| YOLOX-tiny | 416 | 8xb32 | Yes | Yes | 4.9 | 34.3 (+1.6) | [config](./yolox_tiny_fast_8xb32-300e-rtmdet-hyp_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_tiny_fast_8xb32-300e-rtmdet-hyp_coco/yolox_tiny_fast_8xb32-300e-rtmdet-hyp_coco_20230210_143637-4c338102.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_tiny_fast_8xb32-300e-rtmdet-hyp_coco/yolox_tiny_fast_8xb32-300e-rtmdet-hyp_coco_20230210_143637.log.json) |
+| YOLOX-s | 640 | 8xb8 | Yes | No | 2.9 | 40.7 | [config](./yolox_s_fast_8xb8-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_s_fast_8xb8-300e_coco/yolox_s_fast_8xb8-300e_coco_20230213_142600-2b224d8b.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_s_fast_8xb8-300e_coco/yolox_s_fast_8xb8-300e_coco_20230213_142600.log.json) |
+| YOLOX-s | 640 | 8xb32 | Yes | Yes | 9.8 | 41.9 (+1.2) | [config](./yolox_s_fast_8xb32-300e-rtmdet-hyp_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_s_fast_8xb32-300e-rtmdet-hyp_coco/yolox_s_fast_8xb32-300e-rtmdet-hyp_coco_20230210_134645-3a8dfbd7.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_s_fast_8xb32-300e-rtmdet-hyp_coco/yolox_s_fast_8xb32-300e-rtmdet-hyp_coco_20230210_134645.log.json) |
+| YOLOX-m | 640 | 8xb8 | Yes | No | 4.9 | 46.9 | [config](./yolox_m_fast_8xb8-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_m_fast_8xb8-300e_coco/yolox_m_fast_8xb8-300e_coco_20230213_160218-a71a6b25.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_m_fast_8xb8-300e_coco/yolox_m_fast_8xb8-300e_coco_20230213_160218.log.json) |
+| YOLOX-m | 640 | 8xb32 | Yes | Yes | 17.6 | 47.5 (+0.6) | [config](./yolox_m_fast_8xb32-300e-rtmdet-hyp_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_m_fast_8xb32-300e-rtmdet-hyp_coco/yolox_m_fast_8xb32-300e-rtmdet-hyp_coco_20230210_144328-e657e182.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_m_fast_8xb32-300e-rtmdet-hyp_coco/yolox_m_fast_8xb32-300e-rtmdet-hyp_coco_20230210_144328.log.json) |
+| YOLOX-l | 640 | 8xb8 | Yes | No | 8.0 | 50.1 | [config](./yolox_l_fast_8xb8-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_l_fast__8xb8-300e_coco/yolox_l_fast_8xb8-300e_coco_20230213_160715-c731eb1c.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_l_fast_8xb8-300e_coco/yolox_l_fast_8xb8-300e_coco_20230213_160715.log.json) |
+| YOLOX-x | 640 | 8xb8 | Yes | No | 9.8 | 51.4 | [config](./yolox_x_fast_8xb8-300e_coco.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_x_fast_8xb8-300e_coco/yolox_x_fast_8xb8-300e_coco_20230215_133950-1d509fab.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolox/yolox_x_fast_8xb8-300e_coco/yolox_x_fast_8xb8-300e_coco_20230215_133950.log.json) |
YOLOX uses a default training configuration of `8xbs8` which results in a long training time, we expect it to use `8xbs32` to speed up the training and not cause a decrease in mAP. We modified `train_batch_size_per_gpu` from 8 to 32, `batch_augments_interval` from 10 to 1 and `base_lr` from 0.01 to 0.04 under YOLOX-s default configuration based on the linear scaling rule, which resulted in mAP degradation. Finally, I found that using RTMDet's training hyperparameter can improve performance in YOLOX Tiny/S/M, which also validates the superiority of RTMDet's training hyperparameter.
diff --git a/tools/model_converters/yolov5u_to_mmyolo.py b/tools/model_converters/yolov5u_to_mmyolo.py
new file mode 100644
index 00000000..806c76cb
--- /dev/null
+++ b/tools/model_converters/yolov5u_to_mmyolo.py
@@ -0,0 +1,88 @@
+# Copyright (c) OpenMMLab. All rights reserved.
+import argparse
+from collections import OrderedDict
+
+import torch
+
+convert_dict_p5 = {
+ 'model.0': 'backbone.stem',
+ 'model.1': 'backbone.stage1.0',
+ 'model.2': 'backbone.stage1.1',
+ 'model.3': 'backbone.stage2.0',
+ 'model.4': 'backbone.stage2.1',
+ 'model.5': 'backbone.stage3.0',
+ 'model.6': 'backbone.stage3.1',
+ 'model.7': 'backbone.stage4.0',
+ 'model.8': 'backbone.stage4.1',
+ 'model.9': 'backbone.stage4.2',
+ 'model.10': 'neck.reduce_layers.2',
+ 'model.13': 'neck.top_down_layers.0.0',
+ 'model.14': 'neck.top_down_layers.0.1',
+ 'model.17': 'neck.top_down_layers.1',
+ 'model.18': 'neck.downsample_layers.0',
+ 'model.20': 'neck.bottom_up_layers.0',
+ 'model.21': 'neck.downsample_layers.1',
+ 'model.23': 'neck.bottom_up_layers.1',
+ 'model.24': 'bbox_head.head_module',
+}
+
+
+def convert(src, dst):
+ """Convert keys in pretrained YOLOv5u models to mmyolo style."""
+ convert_dict = convert_dict_p5
+
+ print('Converting P5 model')
+ try:
+ yolov5_model = torch.load(src)['model']
+ blobs = yolov5_model.state_dict()
+ except ModuleNotFoundError:
+ raise RuntimeError(
+ 'This script must be placed under the ultralytics repo,'
+ ' because loading the official pretrained model need'
+ ' `model.py` to build model.')
+ state_dict = OrderedDict()
+
+ for key, weight in blobs.items():
+
+ num, module = key.split('.')[1:3]
+ prefix = f'model.{num}'
+ new_key = key.replace(prefix, convert_dict[prefix])
+
+ if '.m.' in new_key:
+ new_key = new_key.replace('.m.', '.blocks.')
+ new_key = new_key.replace('.cv', '.conv')
+ elif 'bbox_head.head_module' in new_key:
+ new_key = new_key.replace('.cv2', '.reg_preds')
+ new_key = new_key.replace('.cv3', '.cls_preds')
+ elif 'backbone.stage4.2' in new_key:
+ new_key = new_key.replace('.cv', '.conv')
+ else:
+ new_key = new_key.replace('.cv1', '.main_conv')
+ new_key = new_key.replace('.cv2', '.short_conv')
+ new_key = new_key.replace('.cv3', '.final_conv')
+
+ if 'bbox_head.head_module.dfl.conv.weight' == new_key:
+ print('Drop "bbox_head.head_module.dfl.conv.weight", '
+ 'because it is useless')
+ continue
+ state_dict[new_key] = weight
+ print(f'Convert {key} to {new_key}')
+
+ # save checkpoint
+ checkpoint = dict()
+ checkpoint['state_dict'] = state_dict
+ torch.save(checkpoint, dst)
+
+
+# Note: This script must be placed under the ultralytics repo to run.
+def main():
+ parser = argparse.ArgumentParser(description='Convert model keys')
+ parser.add_argument(
+ '--src', default='yolov5su.pt', help='src yolov5u model path')
+ parser.add_argument('--dst', default='mmyolov5su.pth', help='save path')
+ args = parser.parse_args()
+ convert(args.src, args.dst)
+
+
+if __name__ == '__main__':
+ main()
diff --git a/tools/model_converters/yolov8_to_mmyolo.py b/tools/model_converters/yolov8_to_mmyolo.py
index d1541367..df0c514b 100644
--- a/tools/model_converters/yolov8_to_mmyolo.py
+++ b/tools/model_converters/yolov8_to_mmyolo.py
@@ -75,7 +75,7 @@ def convert(src, dst):
torch.save(checkpoint, dst)
-# Note: This script must be placed under the YOLOv8 repo to run.
+# Note: This script must be placed under the ultralytics repo to run.
def main():
parser = argparse.ArgumentParser(description='Convert model keys')
parser.add_argument(