[Feature] add download and convert script of dataset (#11)

pull/16/head
古月闻星 2022-09-18 11:43:35 +08:00 committed by GitHub
parent 8ce6886994
commit 71dfeb335f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 163 additions and 0 deletions

View File

@ -0,0 +1,58 @@
import os.path as osp
import mmcv
import mmengine
def convert_balloon_to_coco(ann_file, out_file, image_prefix):
data_infos = mmengine.load(ann_file)
annotations = []
images = []
obj_count = 0
for idx, v in enumerate(mmengine.track_iter_progress(data_infos.values())):
filename = v['filename']
img_path = osp.join(image_prefix, filename)
height, width = mmcv.imread(img_path).shape[:2]
images.append(
dict(id=idx, file_name=filename, height=height, width=width))
for _, obj in v['regions'].items():
assert not obj['region_attributes']
obj = obj['shape_attributes']
px = obj['all_points_x']
py = obj['all_points_y']
poly = [(x + 0.5, y + 0.5) for x, y in zip(px, py)]
poly = [p for x in poly for p in x]
x_min, y_min, x_max, y_max = (min(px), min(py), max(px), max(py))
data_anno = dict(
image_id=idx,
id=obj_count,
category_id=0,
bbox=[x_min, y_min, x_max - x_min, y_max - y_min],
area=(x_max - x_min) * (y_max - y_min),
segmentation=[poly],
iscrowd=0)
annotations.append(data_anno)
obj_count += 1
coco_format_json = dict(
images=images,
annotations=annotations,
categories=[{
'id': 0,
'name': 'balloon'
}])
mmengine.dump(coco_format_json, out_file)
if __name__ == '__main__':
convert_balloon_to_coco('data/balloon/train/via_region_data.json',
'data/balloon/train.json', 'data/balloon/train/')
convert_balloon_to_coco('data/balloon/val/via_region_data.json',
'data/balloon/val.json', 'data/balloon/val/')

View File

@ -0,0 +1,105 @@
import argparse
from itertools import repeat
from multiprocessing.pool import ThreadPool
from pathlib import Path
from tarfile import TarFile
from zipfile import ZipFile
import torch
def parse_args():
parser = argparse.ArgumentParser(
description='Download datasets for training')
parser.add_argument(
'--dataset-name', type=str, help='dataset name', default='coco2017')
parser.add_argument(
'--save-dir',
type=str,
help='the dir to save dataset',
default='data/coco')
parser.add_argument(
'--unzip',
action='store_true',
help='whether unzip dataset or not, zipped files will be saved')
parser.add_argument(
'--delete',
action='store_true',
help='delete the download zipped files')
parser.add_argument(
'--threads', type=int, help='number of threading', default=4)
args = parser.parse_args()
return args
def download(url, dir, unzip=True, delete=False, threads=1):
def download_one(url, dir):
f = dir / Path(url).name
if Path(url).is_file():
Path(url).rename(f)
elif not f.exists():
print(f'Downloading {url} to {f}')
torch.hub.download_url_to_file(url, f, progress=True)
if unzip and f.suffix in ('.zip', '.tar'):
print(f'Unzipping {f.name}')
if f.suffix == '.zip':
ZipFile(f).extractall(path=dir)
elif f.suffix == '.tar':
TarFile(f).extractall(path=dir)
if delete:
f.unlink()
print(f'Delete {f}')
dir = Path(dir)
if threads > 1:
pool = ThreadPool(threads)
pool.imap(lambda x: download_one(*x), zip(url, repeat(dir)))
pool.close()
pool.join()
else:
for u in [url] if isinstance(url, (str, Path)) else url:
download_one(u, dir)
def main():
args = parse_args()
path = Path(args.save_dir)
if not path.exists():
path.mkdir(parents=True, exist_ok=True)
data2url = dict(
# TODO: Support for downloading Panoptic Segmentation of COCO
coco2017=[
'http://images.cocodataset.org/zips/train2017.zip',
'http://images.cocodataset.org/zips/val2017.zip',
'http://images.cocodataset.org/zips/test2017.zip',
'http://images.cocodataset.org/annotations/' +
'annotations_trainval2017.zip'
],
lvis=[
'https://s3-us-west-2.amazonaws.com/dl.fbaipublicfiles.com/LVIS/lvis_v1_train.json.zip', # noqa
'https://s3-us-west-2.amazonaws.com/dl.fbaipublicfiles.com/LVIS/lvis_v1_train.json.zip', # noqa
],
voc2007=[
'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar', # noqa
'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar', # noqa
'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar', # noqa
],
balloon=[
'https://github.com/matterport/Mask_RCNN/' +
'releases/download/v2.1/balloon_dataset.zip'
])
url = data2url.get(args.dataset_name, None)
if url is None:
print('Only support COCO, VOC, balloon,and LVIS now!')
return
download(
url,
dir=path,
unzip=args.unzip,
delete=args.delete,
threads=args.threads)
if __name__ == '__main__':
main()