mirror of https://github.com/open-mmlab/mmyolo.git
parent
74558aa2f7
commit
79f0aae555
|
@ -1,10 +1,15 @@
|
|||
_base_ = './yolov5_s-p6-v62_syncbn_fast_8xb16-300e_coco.py'
|
||||
|
||||
# ========================modified parameters======================
|
||||
deepen_factor = 0.67
|
||||
widen_factor = 0.75
|
||||
lr_factor = 0.1 # lrf=0.1
|
||||
lr_factor = 0.1
|
||||
affine_scale = 0.9
|
||||
loss_cls_weight = 0.3
|
||||
loss_obj_weight = 0.7
|
||||
mixup_prob = 0.1
|
||||
|
||||
# =======================Unmodified in most cases==================
|
||||
num_classes = _base_.num_classes
|
||||
num_det_layers = _base_.num_det_layers
|
||||
img_scale = _base_.img_scale
|
||||
|
@ -20,9 +25,9 @@ model = dict(
|
|||
),
|
||||
bbox_head=dict(
|
||||
head_module=dict(widen_factor=widen_factor),
|
||||
loss_cls=dict(loss_weight=0.3 *
|
||||
loss_cls=dict(loss_weight=loss_cls_weight *
|
||||
(num_classes / 80 * 3 / num_det_layers)),
|
||||
loss_obj=dict(loss_weight=0.7 *
|
||||
loss_obj=dict(loss_weight=loss_obj_weight *
|
||||
((img_scale[0] / 640)**2 * 3 / num_det_layers))))
|
||||
|
||||
pre_transform = _base_.pre_transform
|
||||
|
@ -49,7 +54,7 @@ train_pipeline = [
|
|||
*pre_transform, *mosaic_affine_pipeline,
|
||||
dict(
|
||||
type='YOLOv5MixUp',
|
||||
prob=0.1,
|
||||
prob=mixup_prob,
|
||||
pre_transform=[*pre_transform, *mosaic_affine_pipeline]),
|
||||
dict(
|
||||
type='mmdet.Albu',
|
||||
|
@ -71,5 +76,4 @@ train_pipeline = [
|
|||
]
|
||||
|
||||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
|
||||
default_hooks = dict(param_scheduler=dict(lr_factor=lr_factor))
|
||||
|
|
|
@ -1,10 +1,15 @@
|
|||
_base_ = './yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py'
|
||||
|
||||
# ========================modified parameters======================
|
||||
deepen_factor = 0.67
|
||||
widen_factor = 0.75
|
||||
lr_factor = 0.1 # lrf=0.1
|
||||
lr_factor = 0.1
|
||||
affine_scale = 0.9
|
||||
loss_cls_weight = 0.3
|
||||
loss_obj_weight = 0.7
|
||||
mixup_prob = 0.1
|
||||
|
||||
# =======================Unmodified in most cases==================
|
||||
num_classes = _base_.num_classes
|
||||
num_det_layers = _base_.num_det_layers
|
||||
img_scale = _base_.img_scale
|
||||
|
@ -20,9 +25,9 @@ model = dict(
|
|||
),
|
||||
bbox_head=dict(
|
||||
head_module=dict(widen_factor=widen_factor),
|
||||
loss_cls=dict(loss_weight=0.3 *
|
||||
loss_cls=dict(loss_weight=loss_cls_weight *
|
||||
(num_classes / 80 * 3 / num_det_layers)),
|
||||
loss_obj=dict(loss_weight=0.7 *
|
||||
loss_obj=dict(loss_weight=loss_obj_weight *
|
||||
((img_scale[0] / 640)**2 * 3 / num_det_layers))))
|
||||
|
||||
pre_transform = _base_.pre_transform
|
||||
|
@ -49,7 +54,7 @@ train_pipeline = [
|
|||
*pre_transform, *mosaic_affine_pipeline,
|
||||
dict(
|
||||
type='YOLOv5MixUp',
|
||||
prob=0.1,
|
||||
prob=mixup_prob,
|
||||
pre_transform=[*pre_transform, *mosaic_affine_pipeline]),
|
||||
dict(
|
||||
type='mmdet.Albu',
|
||||
|
@ -71,5 +76,4 @@ train_pipeline = [
|
|||
]
|
||||
|
||||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
|
||||
default_hooks = dict(param_scheduler=dict(lr_factor=lr_factor))
|
||||
|
|
|
@ -1,19 +1,32 @@
|
|||
_base_ = 'yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py'
|
||||
|
||||
# ========================modified parameters======================
|
||||
img_scale = (1280, 1280) # width, height
|
||||
num_classes = 80
|
||||
# only on Val
|
||||
batch_shapes_cfg = dict(img_size=img_scale[0], size_divisor=64)
|
||||
|
||||
num_classes = 80 # Number of classes for classification
|
||||
# Config of batch shapes. Only on val.
|
||||
# It means not used if batch_shapes_cfg is None.
|
||||
batch_shapes_cfg = dict(
|
||||
img_size=img_scale[0],
|
||||
# The image scale of padding should be divided by pad_size_divisor
|
||||
size_divisor=64)
|
||||
# Basic size of multi-scale prior box
|
||||
anchors = [
|
||||
[(19, 27), (44, 40), (38, 94)], # P3/8
|
||||
[(96, 68), (86, 152), (180, 137)], # P4/16
|
||||
[(140, 301), (303, 264), (238, 542)], # P5/32
|
||||
[(436, 615), (739, 380), (925, 792)] # P6/64
|
||||
]
|
||||
# Strides of multi-scale prior box
|
||||
strides = [8, 16, 32, 64]
|
||||
num_det_layers = 4
|
||||
num_det_layers = 4 # The number of model output scales
|
||||
loss_cls_weight = 0.5
|
||||
loss_bbox_weight = 0.05
|
||||
loss_obj_weight = 1.0
|
||||
# The obj loss weights of the three output layers
|
||||
obj_level_weights = [4.0, 1.0, 0.25, 0.06]
|
||||
affine_scale = 0.5 # YOLOv5RandomAffine scaling ratio
|
||||
|
||||
# =======================Unmodified in most cases==================
|
||||
model = dict(
|
||||
backbone=dict(arch='P6', out_indices=(2, 3, 4, 5)),
|
||||
neck=dict(
|
||||
|
@ -23,12 +36,12 @@ model = dict(
|
|||
in_channels=[256, 512, 768, 1024], featmap_strides=strides),
|
||||
prior_generator=dict(base_sizes=anchors, strides=strides),
|
||||
# scaled based on number of detection layers
|
||||
loss_cls=dict(loss_weight=0.5 *
|
||||
loss_cls=dict(loss_weight=loss_cls_weight *
|
||||
(num_classes / 80 * 3 / num_det_layers)),
|
||||
loss_bbox=dict(loss_weight=0.05 * (3 / num_det_layers)),
|
||||
loss_obj=dict(loss_weight=1.0 *
|
||||
loss_bbox=dict(loss_weight=loss_bbox_weight * (3 / num_det_layers)),
|
||||
loss_obj=dict(loss_weight=loss_obj_weight *
|
||||
((img_scale[0] / 640)**2 * 3 / num_det_layers)),
|
||||
obj_level_weights=[4.0, 1.0, 0.25, 0.06]))
|
||||
obj_level_weights=obj_level_weights))
|
||||
|
||||
pre_transform = _base_.pre_transform
|
||||
albu_train_transforms = _base_.albu_train_transforms
|
||||
|
@ -44,7 +57,7 @@ train_pipeline = [
|
|||
type='YOLOv5RandomAffine',
|
||||
max_rotate_degree=0.0,
|
||||
max_shear_degree=0.0,
|
||||
scaling_ratio_range=(0.5, 1.5),
|
||||
scaling_ratio_range=(1 - affine_scale, 1 + affine_scale),
|
||||
# img_scale is (width, height)
|
||||
border=(-img_scale[0] // 2, -img_scale[1] // 2),
|
||||
border_val=(114, 114, 114)),
|
||||
|
|
|
@ -1,9 +1,7 @@
|
|||
_base_ = 'yolov5_s-v61_syncbn_8xb16-300e_coco.py'
|
||||
|
||||
test_pipeline = [
|
||||
dict(
|
||||
type='LoadImageFromFile',
|
||||
file_client_args={{_base_.file_client_args}}),
|
||||
dict(type='LoadImageFromFile', file_client_args=_base_.file_client_args),
|
||||
dict(
|
||||
type='LetterResize',
|
||||
scale=_base_.img_scale,
|
||||
|
|
|
@ -1,47 +1,95 @@
|
|||
_base_ = '../_base_/default_runtime.py'
|
||||
|
||||
# dataset settings
|
||||
data_root = 'data/coco/'
|
||||
dataset_type = 'YOLOv5CocoDataset'
|
||||
# ========================Frequently modified parameters======================
|
||||
# -----data related-----
|
||||
data_root = 'data/coco/' # Root path of data
|
||||
# Path of train annotation file
|
||||
train_ann_file = 'annotations/instances_train2017.json'
|
||||
train_data_prefix = 'train2017/' # Prefix of train image path
|
||||
# Path of val annotation file
|
||||
val_ann_file = 'annotations/instances_val2017.json'
|
||||
val_data_prefix = 'val2017/' # Prefix of val image path
|
||||
|
||||
# parameters that often need to be modified
|
||||
num_classes = 80
|
||||
img_scale = (640, 640) # width, height
|
||||
deepen_factor = 0.33
|
||||
widen_factor = 0.5
|
||||
max_epochs = 300
|
||||
save_epoch_intervals = 10
|
||||
num_classes = 80 # Number of classes for classification
|
||||
# Batch size of a single GPU during training
|
||||
train_batch_size_per_gpu = 16
|
||||
# Worker to pre-fetch data for each single GPU during training
|
||||
train_num_workers = 8
|
||||
val_batch_size_per_gpu = 1
|
||||
val_num_workers = 2
|
||||
|
||||
# persistent_workers must be False if num_workers is 0.
|
||||
# persistent_workers must be False if num_workers is 0
|
||||
persistent_workers = True
|
||||
|
||||
# Base learning rate for optim_wrapper
|
||||
base_lr = 0.01
|
||||
|
||||
# only on Val
|
||||
batch_shapes_cfg = dict(
|
||||
type='BatchShapePolicy',
|
||||
batch_size=val_batch_size_per_gpu,
|
||||
img_size=img_scale[0],
|
||||
size_divisor=32,
|
||||
extra_pad_ratio=0.5)
|
||||
|
||||
# -----model related-----
|
||||
# Basic size of multi-scale prior box
|
||||
anchors = [
|
||||
[(10, 13), (16, 30), (33, 23)], # P3/8
|
||||
[(30, 61), (62, 45), (59, 119)], # P4/16
|
||||
[(116, 90), (156, 198), (373, 326)] # P5/32
|
||||
]
|
||||
strides = [8, 16, 32]
|
||||
num_det_layers = 3
|
||||
|
||||
# single-scale training is recommended to
|
||||
# -----train val related-----
|
||||
# Base learning rate for optim_wrapper. Corresponding to 8xb16=64 bs
|
||||
base_lr = 0.01
|
||||
max_epochs = 300 # Maximum training epochs
|
||||
|
||||
model_test_cfg = dict(
|
||||
# The config of multi-label for multi-class prediction.
|
||||
multi_label=True,
|
||||
# The number of boxes before NMS
|
||||
nms_pre=30000,
|
||||
score_thr=0.001, # Threshold to filter out boxes.
|
||||
nms=dict(type='nms', iou_threshold=0.65), # NMS type and threshold
|
||||
max_per_img=300) # Max number of detections of each image
|
||||
|
||||
# ========================Possible modified parameters========================
|
||||
# -----data related-----
|
||||
img_scale = (640, 640) # width, height
|
||||
# Dataset type, this will be used to define the dataset
|
||||
dataset_type = 'YOLOv5CocoDataset'
|
||||
# Batch size of a single GPU during validation
|
||||
val_batch_size_per_gpu = 1
|
||||
# Worker to pre-fetch data for each single GPU during validation
|
||||
val_num_workers = 2
|
||||
|
||||
# Config of batch shapes. Only on val.
|
||||
# It means not used if batch_shapes_cfg is None.
|
||||
batch_shapes_cfg = dict(
|
||||
type='BatchShapePolicy',
|
||||
batch_size=val_batch_size_per_gpu,
|
||||
img_size=img_scale[0],
|
||||
# The image scale of padding should be divided by pad_size_divisor
|
||||
size_divisor=32,
|
||||
# Additional paddings for pixel scale
|
||||
extra_pad_ratio=0.5)
|
||||
|
||||
# -----model related-----
|
||||
# The scaling factor that controls the depth of the network structure
|
||||
deepen_factor = 0.33
|
||||
# The scaling factor that controls the width of the network structure
|
||||
widen_factor = 0.5
|
||||
# Strides of multi-scale prior box
|
||||
strides = [8, 16, 32]
|
||||
num_det_layers = 3 # The number of model output scales
|
||||
norm_cfg = dict(type='BN', momentum=0.03, eps=0.001)
|
||||
|
||||
# -----train val related-----
|
||||
affine_scale = 0.5 # YOLOv5RandomAffine scaling ratio
|
||||
loss_cls_weight = 0.5
|
||||
loss_bbox_weight = 0.05
|
||||
loss_obj_weight = 1.0
|
||||
prior_match_thr = 4. # Priori box matching threshold
|
||||
obj_level_weights = [4., 1.,
|
||||
0.4] # The obj loss weights of the three output layers
|
||||
lr_factor = 0.01 # Learning rate scaling factor
|
||||
weight_decay = 0.0005
|
||||
# Save model checkpoint and validation intervals
|
||||
save_epoch_intervals = 10
|
||||
# The maximum checkpoints to keep.
|
||||
max_keep_ckpts = 3
|
||||
# Single-scale training is recommended to
|
||||
# be turned on, which can speed up training.
|
||||
env_cfg = dict(cudnn_benchmark=True)
|
||||
|
||||
# ===============================Unmodified in most cases====================
|
||||
model = dict(
|
||||
type='YOLODetector',
|
||||
data_preprocessor=dict(
|
||||
|
@ -53,7 +101,7 @@ model = dict(
|
|||
type='YOLOv5CSPDarknet',
|
||||
deepen_factor=deepen_factor,
|
||||
widen_factor=widen_factor,
|
||||
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
|
||||
norm_cfg=norm_cfg,
|
||||
act_cfg=dict(type='SiLU', inplace=True)),
|
||||
neck=dict(
|
||||
type='YOLOv5PAFPN',
|
||||
|
@ -62,7 +110,7 @@ model = dict(
|
|||
in_channels=[256, 512, 1024],
|
||||
out_channels=[256, 512, 1024],
|
||||
num_csp_blocks=3,
|
||||
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
|
||||
norm_cfg=norm_cfg,
|
||||
act_cfg=dict(type='SiLU', inplace=True)),
|
||||
bbox_head=dict(
|
||||
type='YOLOv5Head',
|
||||
|
@ -82,28 +130,25 @@ model = dict(
|
|||
type='mmdet.CrossEntropyLoss',
|
||||
use_sigmoid=True,
|
||||
reduction='mean',
|
||||
loss_weight=0.5 * (num_classes / 80 * 3 / num_det_layers)),
|
||||
loss_weight=loss_cls_weight *
|
||||
(num_classes / 80 * 3 / num_det_layers)),
|
||||
loss_bbox=dict(
|
||||
type='IoULoss',
|
||||
iou_mode='ciou',
|
||||
bbox_format='xywh',
|
||||
eps=1e-7,
|
||||
reduction='mean',
|
||||
loss_weight=0.05 * (3 / num_det_layers),
|
||||
loss_weight=loss_bbox_weight * (3 / num_det_layers),
|
||||
return_iou=True),
|
||||
loss_obj=dict(
|
||||
type='mmdet.CrossEntropyLoss',
|
||||
use_sigmoid=True,
|
||||
reduction='mean',
|
||||
loss_weight=1.0 * ((img_scale[0] / 640)**2 * 3 / num_det_layers)),
|
||||
prior_match_thr=4.,
|
||||
obj_level_weights=[4., 1., 0.4]),
|
||||
test_cfg=dict(
|
||||
multi_label=True,
|
||||
nms_pre=30000,
|
||||
score_thr=0.001,
|
||||
nms=dict(type='nms', iou_threshold=0.65),
|
||||
max_per_img=300))
|
||||
loss_weight=loss_obj_weight *
|
||||
((img_scale[0] / 640)**2 * 3 / num_det_layers)),
|
||||
prior_match_thr=prior_match_thr,
|
||||
obj_level_weights=obj_level_weights),
|
||||
test_cfg=model_test_cfg)
|
||||
|
||||
albu_train_transforms = [
|
||||
dict(type='Blur', p=0.01),
|
||||
|
@ -128,7 +173,7 @@ train_pipeline = [
|
|||
type='YOLOv5RandomAffine',
|
||||
max_rotate_degree=0.0,
|
||||
max_shear_degree=0.0,
|
||||
scaling_ratio_range=(0.5, 1.5),
|
||||
scaling_ratio_range=(1 - affine_scale, 1 + affine_scale),
|
||||
# img_scale is (width, height)
|
||||
border=(-img_scale[0] // 2, -img_scale[1] // 2),
|
||||
border_val=(114, 114, 114)),
|
||||
|
@ -160,8 +205,8 @@ train_dataloader = dict(
|
|||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='annotations/instances_train2017.json',
|
||||
data_prefix=dict(img='train2017/'),
|
||||
ann_file=train_ann_file,
|
||||
data_prefix=dict(img=train_data_prefix),
|
||||
filter_cfg=dict(filter_empty_gt=False, min_size=32),
|
||||
pipeline=train_pipeline))
|
||||
|
||||
|
@ -191,8 +236,8 @@ val_dataloader = dict(
|
|||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
test_mode=True,
|
||||
data_prefix=dict(img='val2017/'),
|
||||
ann_file='annotations/instances_val2017.json',
|
||||
data_prefix=dict(img=val_data_prefix),
|
||||
ann_file=val_ann_file,
|
||||
pipeline=test_pipeline,
|
||||
batch_shapes_cfg=batch_shapes_cfg))
|
||||
|
||||
|
@ -205,7 +250,7 @@ optim_wrapper = dict(
|
|||
type='SGD',
|
||||
lr=base_lr,
|
||||
momentum=0.937,
|
||||
weight_decay=0.0005,
|
||||
weight_decay=weight_decay,
|
||||
nesterov=True,
|
||||
batch_size_per_gpu=train_batch_size_per_gpu),
|
||||
constructor='YOLOv5OptimizerConstructor')
|
||||
|
@ -214,13 +259,13 @@ default_hooks = dict(
|
|||
param_scheduler=dict(
|
||||
type='YOLOv5ParamSchedulerHook',
|
||||
scheduler_type='linear',
|
||||
lr_factor=0.01,
|
||||
lr_factor=lr_factor,
|
||||
max_epochs=max_epochs),
|
||||
checkpoint=dict(
|
||||
type='CheckpointHook',
|
||||
interval=save_epoch_intervals,
|
||||
save_best='auto',
|
||||
max_keep_ckpts=3))
|
||||
max_keep_ckpts=max_keep_ckpts))
|
||||
|
||||
custom_hooks = [
|
||||
dict(
|
||||
|
@ -235,7 +280,7 @@ custom_hooks = [
|
|||
val_evaluator = dict(
|
||||
type='mmdet.CocoMetric',
|
||||
proposal_nums=(100, 1, 10),
|
||||
ann_file=data_root + 'annotations/instances_val2017.json',
|
||||
ann_file=data_root + val_ann_file,
|
||||
metric='bbox')
|
||||
test_evaluator = val_evaluator
|
||||
|
||||
|
|
|
@ -1,39 +1,42 @@
|
|||
_base_ = './yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py'
|
||||
|
||||
# ========================modified parameters======================
|
||||
data_root = 'data/balloon/'
|
||||
|
||||
train_batch_size_per_gpu = 4
|
||||
train_num_workers = 2
|
||||
|
||||
# Path of train annotation file
|
||||
train_ann_file = 'train.json'
|
||||
train_data_prefix = 'train/' # Prefix of train image path
|
||||
# Path of val annotation file
|
||||
val_ann_file = 'val.json'
|
||||
val_data_prefix = 'val/' # Prefix of val image path
|
||||
metainfo = {
|
||||
'classes': ('balloon', ),
|
||||
'palette': [
|
||||
(220, 20, 60),
|
||||
]
|
||||
}
|
||||
num_classes = 1
|
||||
|
||||
train_batch_size_per_gpu = 4
|
||||
train_num_workers = 2
|
||||
log_interval = 1
|
||||
|
||||
# =======================Unmodified in most cases==================
|
||||
train_dataloader = dict(
|
||||
batch_size=train_batch_size_per_gpu,
|
||||
num_workers=train_num_workers,
|
||||
dataset=dict(
|
||||
data_root=data_root,
|
||||
metainfo=metainfo,
|
||||
data_prefix=dict(img='train/'),
|
||||
ann_file='train.json'))
|
||||
|
||||
data_prefix=dict(img=train_data_prefix),
|
||||
ann_file=train_ann_file))
|
||||
val_dataloader = dict(
|
||||
dataset=dict(
|
||||
data_root=data_root,
|
||||
metainfo=metainfo,
|
||||
data_prefix=dict(img='val/'),
|
||||
ann_file='val.json'))
|
||||
|
||||
data_prefix=dict(img=val_data_prefix),
|
||||
ann_file=val_ann_file))
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
val_evaluator = dict(ann_file=data_root + 'val.json')
|
||||
|
||||
val_evaluator = dict(ann_file=data_root + val_ann_file)
|
||||
test_evaluator = val_evaluator
|
||||
|
||||
model = dict(bbox_head=dict(head_module=dict(num_classes=1)))
|
||||
|
||||
default_hooks = dict(logger=dict(interval=1))
|
||||
model = dict(bbox_head=dict(head_module=dict(num_classes=num_classes)))
|
||||
default_hooks = dict(logger=dict(interval=log_interval))
|
||||
|
|
Loading…
Reference in New Issue