[Feature] Support grad-based cam and grad-free cam (#234)

* support cam

* update

* update

* done

* fix lint

* add docstr

* add doc

* update

* update

* FIX
pull/317/head
Haian Huang(深度眸) 2022-11-25 16:45:40 +08:00 committed by GitHub
parent 1045b41b68
commit 9221499af4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 1060 additions and 33 deletions

View File

@ -0,0 +1,276 @@
# Copyright (c) OpenMMLab. All rights reserved.
"""This script is in the experimental verification stage and cannot be
guaranteed to be completely correct. Currently Grad-based CAM and Grad-free CAM
are supported.
The target detection task is different from the classification task. It not
only includes the AM map of the category, but also includes information such as
bbox and mask, so this script is named bboxam.
"""
import argparse
import os.path
import warnings
from functools import partial
import cv2
import mmcv
from mmengine import Config, DictAction, MessageHub
from mmengine.utils import ProgressBar
from mmyolo.utils import register_all_modules
from mmyolo.utils.boxam_utils import (BoxAMDetectorVisualizer,
BoxAMDetectorWrapper, DetAblationLayer,
DetBoxScoreTarget, GradCAM,
GradCAMPlusPlus, reshape_transform)
from mmyolo.utils.misc import get_file_list
try:
from pytorch_grad_cam import AblationCAM, EigenCAM
except ImportError:
raise ImportError('Please run `pip install "grad-cam"` to install '
'pytorch_grad_cam package.')
GRAD_FREE_METHOD_MAP = {
'ablationcam': AblationCAM,
'eigencam': EigenCAM,
# 'scorecam': ScoreCAM, # consumes too much memory
}
GRAD_BASED_METHOD_MAP = {'gradcam': GradCAM, 'gradcam++': GradCAMPlusPlus}
ALL_SUPPORT_METHODS = list(GRAD_FREE_METHOD_MAP.keys()
| GRAD_BASED_METHOD_MAP.keys())
IGNORE_LOSS_PARAMS = {
'yolov5': ['loss_obj'],
'yolov6': ['loss_cls'],
'yolox': ['loss_obj'],
'rtmdet': ['loss_cls'],
}
# This parameter is required in some algorithms
# for calculating Loss
message_hub = MessageHub.get_current_instance()
message_hub.runtime_info['epoch'] = 0
def parse_args():
parser = argparse.ArgumentParser(description='Visualize Box AM')
parser.add_argument(
'img', help='Image path, include image file, dir and URL.')
parser.add_argument('config', help='Config file')
parser.add_argument('checkpoint', help='Checkpoint file')
parser.add_argument(
'--method',
default='gradcam',
choices=ALL_SUPPORT_METHODS,
help='Type of method to use, supports '
f'{", ".join(ALL_SUPPORT_METHODS)}.')
parser.add_argument(
'--target-layers',
default=['neck.out_layers[2]'],
nargs='+',
type=str,
help='The target layers to get Box AM, if not set, the tool will '
'specify the neck.out_layers[2]')
parser.add_argument(
'--out-dir', default='./output', help='Path to output file')
parser.add_argument(
'--show', action='store_true', help='Show the CAM results')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference')
parser.add_argument(
'--score-thr', type=float, default=0.3, help='Bbox score threshold')
parser.add_argument(
'--topk',
type=int,
default=-1,
help='Select topk predict resutls to show. -1 are mean all.')
parser.add_argument(
'--max-shape',
nargs='+',
type=int,
default=-1,
help='max shapes. Its purpose is to save GPU memory. '
'The activation map is scaled and then evaluated. '
'If set to -1, it means no scaling.')
parser.add_argument(
'--preview-model',
default=False,
action='store_true',
help='To preview all the model layers')
parser.add_argument(
'--norm-in-bbox', action='store_true', help='Norm in bbox of am image')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
# Only used by AblationCAM
parser.add_argument(
'--batch-size',
type=int,
default=1,
help='batch of inference of AblationCAM')
parser.add_argument(
'--ratio-channels-to-ablate',
type=int,
default=0.5,
help='Making it much faster of AblationCAM. '
'The parameter controls how many channels should be ablated')
args = parser.parse_args()
return args
def init_detector_and_visualizer(args, cfg):
max_shape = args.max_shape
if not isinstance(max_shape, list):
max_shape = [args.max_shape]
assert len(max_shape) == 1 or len(max_shape) == 2
model_wrapper = BoxAMDetectorWrapper(
cfg, args.checkpoint, args.score_thr, device=args.device)
if args.preview_model:
print(model_wrapper.detector)
print('\n Please remove `--preview-model` to get the BoxAM.')
return None, None
target_layers = []
for target_layer in args.target_layers:
try:
target_layers.append(
eval(f'model_wrapper.detector.{target_layer}'))
except Exception as e:
print(model_wrapper.detector)
raise RuntimeError('layer does not exist', e)
ablationcam_extra_params = {
'batch_size': args.batch_size,
'ablation_layer': DetAblationLayer(),
'ratio_channels_to_ablate': args.ratio_channels_to_ablate
}
if args.method in GRAD_BASED_METHOD_MAP:
method_class = GRAD_BASED_METHOD_MAP[args.method]
is_need_grad = True
else:
method_class = GRAD_FREE_METHOD_MAP[args.method]
is_need_grad = False
boxam_detector_visualizer = BoxAMDetectorVisualizer(
method_class,
model_wrapper,
target_layers,
reshape_transform=partial(
reshape_transform, max_shape=max_shape, is_need_grad=is_need_grad),
is_need_grad=is_need_grad,
extra_params=ablationcam_extra_params)
return model_wrapper, boxam_detector_visualizer
def main():
register_all_modules()
args = parse_args()
# hard code
ignore_loss_params = None
for param_keys in IGNORE_LOSS_PARAMS:
if param_keys in args.config:
print(f'The algorithm currently used is {param_keys}')
ignore_loss_params = IGNORE_LOSS_PARAMS[param_keys]
break
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
if not os.path.exists(args.out_dir) and not args.show:
os.mkdir(args.out_dir)
model_wrapper, boxam_detector_visualizer = init_detector_and_visualizer(
args, cfg)
# get file list
image_list, source_type = get_file_list(args.img)
progress_bar = ProgressBar(len(image_list))
for image_path in image_list:
image = cv2.imread(image_path)
model_wrapper.set_input_data(image)
# forward detection results
result = model_wrapper()[0]
pred_instances = result.pred_instances
# Get candidate predict info with score threshold
pred_instances = pred_instances[pred_instances.scores > args.score_thr]
if len(pred_instances) == 0:
warnings.warn('empty detection results! skip this')
continue
if args.topk > 0:
pred_instances = pred_instances[:args.topk]
targets = [
DetBoxScoreTarget(
pred_instances,
device=args.device,
ignore_loss_params=ignore_loss_params)
]
if args.method in GRAD_BASED_METHOD_MAP:
model_wrapper.need_loss(True)
model_wrapper.set_input_data(image, pred_instances)
boxam_detector_visualizer.switch_activations_and_grads(
model_wrapper)
# get box am image
grayscale_boxam = boxam_detector_visualizer(image, targets=targets)
# draw cam on image
pred_instances = pred_instances.numpy()
image_with_bounding_boxes = boxam_detector_visualizer.show_am(
image,
pred_instances,
grayscale_boxam,
with_norm_in_bboxes=args.norm_in_bbox)
if source_type['is_dir']:
filename = os.path.relpath(image_path, args.img).replace('/', '_')
else:
filename = os.path.basename(image_path)
out_file = None if args.show else os.path.join(args.out_dir, filename)
if out_file:
mmcv.imwrite(image_with_bounding_boxes, out_file)
else:
cv2.namedWindow(filename, 0)
cv2.imshow(filename, image_with_bounding_boxes)
cv2.waitKey(0)
# switch
if args.method in GRAD_BASED_METHOD_MAP:
model_wrapper.need_loss(False)
boxam_detector_visualizer.switch_activations_and_grads(
model_wrapper)
progress_bar.update()
if not args.show:
print(f'All done!'
f'\nResults have been saved at {os.path.abspath(args.out_dir)}')
if __name__ == '__main__':
main()

View File

@ -13,7 +13,6 @@ from mmyolo.utils import register_all_modules
from mmyolo.utils.misc import auto_arrange_images, get_file_list
# TODO: Refine
def parse_args():
parser = argparse.ArgumentParser(description='Visualize feature map')
parser.add_argument(
@ -190,8 +189,9 @@ def main():
if args.show:
visualizer.show(shown_imgs)
print(f'All done!'
f'\nResults have been saved at {os.path.abspath(args.out_dir)}')
if not args.show:
print(f'All done!'
f'\nResults have been saved at {os.path.abspath(args.out_dir)}')
# Please refer to the usage tutorial:

View File

@ -1,5 +1,7 @@
# Visualization
This article includes feature map visualization and Grad-Based and Grad-Free CAM visualization
## Feature map visualization
<div align=center>
@ -13,7 +15,7 @@ In MMYOLO, you can use the `Visualizer` provided in MMEngine for feature map vis
- Support basic drawing interfaces and feature map visualization.
- Support selecting different layers in the model to get the feature map. The display methods include `squeeze_mean`, `select_max`, and `topk`. Users can also customize the layout of the feature map display with `arrangement`.
## Feature map generation
### Feature map generation
You can use `demo/featmap_vis_demo.py` to get a quick view of the visualization results. To better understand all functions, we list all primary parameters and their features here as follows:
@ -51,7 +53,7 @@ You can use `demo/featmap_vis_demo.py` to get a quick view of the visualization
**Note: When the image and feature map scales are different, the `draw_featmap` function will automatically perform an upsampling alignment. If your image has an operation such as `Pad` in the preprocessing during the inference, the feature map obtained is processed with `Pad`, which may cause misalignment problems if you directly upsample the image.**
## Usage examples
### Usage examples
Take the pre-trained YOLOv5-s model as an example. Please download the model weight file to the root directory.
@ -88,7 +90,7 @@ The original `test_pipeline` is:
test_pipeline = [
dict(
type='LoadImageFromFile',
file_client_args={{_base_.file_client_args}}),
file_client_args=_base_.file_client_args),
dict(type='YOLOv5KeepRatioResize', scale=img_scale),
dict(
type='LetterResize',
@ -166,7 +168,7 @@ python demo/featmap_vis_demo.py demo/dog.jpg \
```
<div align=center>
<img src="https://user-images.githubusercontent.com/17425982/198522489-8adee6ae-9915-4e9d-bf50-167b8a12c275.png" width="1200" alt="image"/>
<img src="https://user-images.githubusercontent.com/17425982/198522489-8adee6ae-9915-4e9d-bf50-167b8a12c275.png" width="800" alt="image"/>
</div>
(5) When the visualization process finishes, you can choose to display the result or store it locally. You only need to add the parameter `--out-file xxx.jpg`:
@ -179,3 +181,113 @@ python demo/featmap_vis_demo.py demo/dog.jpg \
--channel-reduction select_max \
--out-file featmap_backbone.jpg
```
## Grad-Based and Grad-Free CAM Visualization
Object detection CAM visualization is much more complex and different than classification CAM.
This article only briefly explains the usage, and a separate document will be opened to describe the implementation principles and precautions in detail later.
You can call `demo/boxmap_vis_demo.py` to get the AM visualization results at the Box level easily and quickly. Currently, `YOLOv5/YOLOv6/YOLOX/RTMDet` is supported.
Taking YOLOv5 as an example, as with the feature map visualization, you need to modify the `test_pipeline` first, otherwise there will be a problem of misalignment between the feature map and the original image.
The original `test_pipeline` is:
```python
test_pipeline = [
dict(
type='LoadImageFromFile',
file_client_args=_base_.file_client_args),
dict(type='YOLOv5KeepRatioResize', scale=img_scale),
dict(
type='LetterResize',
scale=img_scale,
allow_scale_up=False,
pad_val=dict(img=114)),
dict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'),
dict(
type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor', 'pad_param'))
]
```
Change to the following version:
```python
test_pipeline = [
dict(
type='LoadImageFromFile',
file_client_args=_base_.file_client_args),
dict(type='mmdet.Resize', scale=img_scale, keep_ratio=False), # change the LetterResize to mmdet.Resize
dict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'),
dict(
type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor'))
]
```
(1) Use the `GradCAM` method to visualize the AM of the last output layer of the neck module
```shell
python demo/boxam_vis_demo.py \
demo/dog.jpg \
configs/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py \
yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth
```
<div align=center>
<img src="https://user-images.githubusercontent.com/17425982/203775584-c4aebf11-4ff8-4530-85fe-7dda897e95a8.jpg" width="800" alt="image"/>
</div>
The corresponding feature AM is as follows:
<div align=center>
<img src="https://user-images.githubusercontent.com/17425982/203774801-1555bcfb-a8f9-4688-8ed6-982d6ad38e1d.jpg" width="800" alt="image"/>
</div>
It can be seen that the `GradCAM` effect can highlight the AM information at the box level.
You can choose to visualize only the top prediction boxes with the highest prediction scores via the `--topk` parameter
```shell
python demo/boxam_vis_demo.py \
demo/dog.jpg \
configs/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py \
yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth \
--topk 2
```
<div align=center>
<img src="https://user-images.githubusercontent.com/17425982/203778700-3165aa72-ecaf-40cc-b470-6911646e6046.jpg" width="800" alt="image"/>
</div>
(2) Use the AblationCAM method to visualize the AM of the last output layer of the neck module
```shell
python demo/boxam_vis_demo.py \
demo/dog.jpg \
configs/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py \
yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth \
--method ablationcam
```
<div align=center>
<img src="https://user-images.githubusercontent.com/17425982/203776978-b5a9b383-93b4-4b35-9e6a-7cac684b372c.jpg" width="800" alt="image"/>
</div>
Since `AblationCAM` is weighted by the contribution of each channel to the score, it is impossible to visualize only the AM information at the box level like `GradCAN`. But you can use `--norm-in-bbox` to only show bbox inside AM
```shell
python demo/boxam_vis_demo.py \
demo/dog.jpg \
configs/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py \
yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth \
--method ablationcam \
--norm-in-bbox
```
<div align=center>
<img src="https://user-images.githubusercontent.com/17425982/203777566-7c74e82f-b477-488e-958f-91e1d10833b9.jpg" width="800" alt="image"/>
</div>

View File

@ -1,5 +1,7 @@
# 可视化
本文包括特征图可视化和 Grad-Based 和 Grad-Free CAM 可视化
## 特征图可视化
<div align=center>
@ -12,7 +14,7 @@ MMYOLO 中,将使用 MMEngine 提供的 `Visualizer` 可视化器进行特征
- 支持基础绘图接口以及特征图可视化。
- 支持选择模型中的不同层来得到特征图,包含 `squeeze_mean` `select_max` `topk` 三种显示方式,用户还可以使用 `arrangement` 自定义特征图显示的布局方式。
## 特征图绘制
### 特征图绘制
你可以调用 `demo/featmap_vis_demo.py` 来简单快捷地得到可视化结果,为了方便理解,将其主要参数的功能梳理如下:
@ -50,7 +52,7 @@ MMYOLO 中,将使用 MMEngine 提供的 `Visualizer` 可视化器进行特征
**注意:当图片和特征图尺度不一样时候,`draw_featmap` 函数会自动进行上采样对齐。如果你的图片在推理过程中前处理存在类似 Pad 的操作此时得到的特征图也是 Pad 过的,那么直接上采样就可能会出现不对齐问题。**
## 用法示例
### 用法示例
以预训练好的 YOLOv5-s 模型为例:
@ -167,7 +169,7 @@ python demo/featmap_vis_demo.py demo/dog.jpg \
```
<div align=center>
<img src="https://user-images.githubusercontent.com/17425982/198522489-8adee6ae-9915-4e9d-bf50-167b8a12c275.png" width="1200" alt="image"/>
<img src="https://user-images.githubusercontent.com/17425982/198522489-8adee6ae-9915-4e9d-bf50-167b8a12c275.png" width="800" alt="image"/>
</div>
(5) 存储绘制后的图片,在绘制完成后,可以选择本地窗口显示,也可以存储到本地,只需要加入参数 `--out-file xxx.jpg`
@ -180,3 +182,113 @@ python demo/featmap_vis_demo.py demo/dog.jpg \
--channel-reduction select_max \
--out-file featmap_backbone.jpg
```
## Grad-Based 和 Grad-Free CAM 可视化
目标检测 CAM 可视化相比于分类 CAM 复杂很多且差异很大。本文只是简要说明用法,后续会单独开文档详细描述实现原理和注意事项。
你可以调用 `demo/boxmap_vis_demo.py` 来简单快捷地得到 Box 级别的 AM 可视化结果,目前已经支持 `YOLOv5/YOLOv6/YOLOX/RTMDet`
以 YOLOv5 为例,和特征图可视化绘制一样,你需要先修改 `test_pipeline`,否则会出现特征图和原图不对齐问题。
旧的 `test_pipeline` 为:
```python
test_pipeline = [
dict(
type='LoadImageFromFile',
file_client_args=_base_.file_client_args),
dict(type='YOLOv5KeepRatioResize', scale=img_scale),
dict(
type='LetterResize',
scale=img_scale,
allow_scale_up=False,
pad_val=dict(img=114)),
dict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'),
dict(
type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor', 'pad_param'))
]
```
修改为如下配置:
```python
test_pipeline = [
dict(
type='LoadImageFromFile',
file_client_args=_base_.file_client_args),
dict(type='mmdet.Resize', scale=img_scale, keep_ratio=False), # 这里将 LetterResize 修改成 mmdet.Resize
dict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'),
dict(
type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor'))
]
```
(1) 使用 `GradCAM` 方法可视化 neck 模块的最后一个输出层的 AM 图
```shell
python demo/boxam_vis_demo.py \
demo/dog.jpg \
configs/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py \
yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth
```
<div align=center>
<img src="https://user-images.githubusercontent.com/17425982/203775584-c4aebf11-4ff8-4530-85fe-7dda897e95a8.jpg" width="800" alt="image"/>
</div>
相对应的特征图 AM 图如下:
<div align=center>
<img src="https://user-images.githubusercontent.com/17425982/203774801-1555bcfb-a8f9-4688-8ed6-982d6ad38e1d.jpg" width="800" alt="image"/>
</div>
可以看出 `GradCAM` 效果可以突出 box 级别的 AM 信息。
你可以通过 `--topk` 参数选择仅仅可视化预测分值最高的前几个预测框
```shell
python demo/boxam_vis_demo.py \
demo/dog.jpg \
configs/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py \
yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth \
--topk 2
```
<div align=center>
<img src="https://user-images.githubusercontent.com/17425982/203778700-3165aa72-ecaf-40cc-b470-6911646e6046.jpg" width="800" alt="image"/>
</div>
(2) 使用 `AblationCAM` 方法可视化 neck 模块的最后一个输出层的 AM 图
```shell
python demo/boxam_vis_demo.py \
demo/dog.jpg \
configs/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py \
yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth \
--method ablationcam
```
<div align=center>
<img src="https://user-images.githubusercontent.com/17425982/203776978-b5a9b383-93b4-4b35-9e6a-7cac684b372c.jpg" width="800" alt="image"/>
</div>
由于 `AblationCAM` 是通过每个通道对分值的贡献程度来加权,因此无法实现类似 `GradCAM` 的仅仅可视化 box 级别的 AM 信息, 但是你可以使用 `--norm-in-bbox` 来仅仅显示 bbox 内部 AM
```shell
python demo/boxam_vis_demo.py \
demo/dog.jpg \
configs/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py \
yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth \
--method ablationcam \
--norm-in-bbox
```
<div align=center>
<img src="https://user-images.githubusercontent.com/17425982/203777566-7c74e82f-b477-488e-958f-91e1d10833b9.jpg" width="800" alt="image"/>
</div>

View File

@ -377,7 +377,7 @@ class YOLOv6Head(YOLOv5Head):
loss_cls=loss_cls * world_size, loss_bbox=loss_bbox * world_size)
@staticmethod
def gt_instances_preprocess(batch_gt_instances: Tensor,
def gt_instances_preprocess(batch_gt_instances: Union[Tensor, Sequence],
batch_size: int) -> Tensor:
"""Split batch_gt_instances with batch size, from [all_gt_bboxes, 6]
to.
@ -393,28 +393,51 @@ class YOLOv6Head(YOLOv5Head):
Returns:
Tensor: batch gt instances data, shape [batch_size, number_gt, 5]
"""
if isinstance(batch_gt_instances, Sequence):
max_gt_bbox_len = max(
[len(gt_instances) for gt_instances in batch_gt_instances])
# fill [-1., 0., 0., 0., 0.] if some shape of
# single batch not equal max_gt_bbox_len
batch_instance_list = []
for index, gt_instance in enumerate(batch_gt_instances):
bboxes = gt_instance.bboxes
labels = gt_instance.labels
batch_instance_list.append(
torch.cat((labels[:, None], bboxes), dim=-1))
# sqlit batch gt instance [all_gt_bboxes, 6] ->
# [batch_size, number_gt_each_batch, 5]
batch_instance_list = []
max_gt_bbox_len = 0
for i in range(batch_size):
single_batch_instance = \
batch_gt_instances[batch_gt_instances[:, 0] == i, :]
single_batch_instance = single_batch_instance[:, 1:]
batch_instance_list.append(single_batch_instance)
if len(single_batch_instance) > max_gt_bbox_len:
max_gt_bbox_len = len(single_batch_instance)
if bboxes.shape[0] >= max_gt_bbox_len:
continue
# fill [-1., 0., 0., 0., 0.] if some shape of
# single batch not equal max_gt_bbox_len
for index, gt_instance in enumerate(batch_instance_list):
if gt_instance.shape[0] >= max_gt_bbox_len:
continue
fill_tensor = batch_gt_instances.new_full(
[max_gt_bbox_len - gt_instance.shape[0], 5], 0)
fill_tensor[:, 0] = -1.
batch_instance_list[index] = torch.cat(
(batch_instance_list[index], fill_tensor), dim=0)
fill_tensor = bboxes.new_full(
[max_gt_bbox_len - bboxes.shape[0], 5], 0)
fill_tensor[:, 0] = -1.
batch_instance_list[index] = torch.cat(
(batch_instance_list[-1], fill_tensor), dim=0)
return torch.stack(batch_instance_list)
return torch.stack(batch_instance_list)
else:
# faster version
# sqlit batch gt instance [all_gt_bboxes, 6] ->
# [batch_size, number_gt_each_batch, 5]
batch_instance_list = []
max_gt_bbox_len = 0
for i in range(batch_size):
single_batch_instance = \
batch_gt_instances[batch_gt_instances[:, 0] == i, :]
single_batch_instance = single_batch_instance[:, 1:]
batch_instance_list.append(single_batch_instance)
if len(single_batch_instance) > max_gt_bbox_len:
max_gt_bbox_len = len(single_batch_instance)
# fill [-1., 0., 0., 0., 0.] if some shape of
# single batch not equal max_gt_bbox_len
for index, gt_instance in enumerate(batch_instance_list):
if gt_instance.shape[0] >= max_gt_bbox_len:
continue
fill_tensor = batch_gt_instances.new_full(
[max_gt_bbox_len - gt_instance.shape[0], 5], 0)
fill_tensor[:, 0] = -1.
batch_instance_list[index] = torch.cat(
(batch_instance_list[index], fill_tensor), dim=0)
return torch.stack(batch_instance_list)

View File

@ -0,0 +1,504 @@
# Copyright (c) OpenMMLab. All rights reserved.
import bisect
import copy
import warnings
from pathlib import Path
from typing import Callable, List, Optional, Tuple, Union
import cv2
import numpy as np
import torch
import torch.nn as nn
import torchvision
from mmcv.transforms import Compose
from mmdet.evaluation import get_classes
from mmdet.models import build_detector
from mmdet.utils import ConfigType
from mmengine.config import Config
from mmengine.runner import load_checkpoint
from mmengine.structures import InstanceData
from torch import Tensor
try:
from pytorch_grad_cam import (AblationCAM, AblationLayer,
ActivationsAndGradients)
from pytorch_grad_cam import GradCAM as Base_GradCAM
from pytorch_grad_cam import GradCAMPlusPlus as Base_GradCAMPlusPlus
from pytorch_grad_cam.base_cam import BaseCAM
from pytorch_grad_cam.utils.image import scale_cam_image, show_cam_on_image
from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
except ImportError:
pass
def init_detector(
config: Union[str, Path, Config],
checkpoint: Optional[str] = None,
palette: str = 'coco',
device: str = 'cuda:0',
cfg_options: Optional[dict] = None,
) -> nn.Module:
"""Initialize a detector from config file.
Args:
config (str, :obj:`Path`, or :obj:`mmengine.Config`): Config file path,
:obj:`Path`, or the config object.
checkpoint (str, optional): Checkpoint path. If left as None, the model
will not load any weights.
palette (str): Color palette used for visualization. If palette
is stored in checkpoint, use checkpoint's palette first, otherwise
use externally passed palette. Currently, supports 'coco', 'voc',
'citys' and 'random'. Defaults to coco.
device (str): The device where the anchors will be put on.
Defaults to cuda:0.
cfg_options (dict, optional): Options to override some settings in
the used config.
Returns:
nn.Module: The constructed detector.
"""
if isinstance(config, (str, Path)):
config = Config.fromfile(config)
elif not isinstance(config, Config):
raise TypeError('config must be a filename or Config object, '
f'but got {type(config)}')
if cfg_options is not None:
config.merge_from_dict(cfg_options)
elif 'init_cfg' in config.model.backbone:
config.model.backbone.init_cfg = None
# only change this
# grad based method requires train_cfg
# config.model.train_cfg = None
model = build_detector(config.model)
if checkpoint is not None:
checkpoint = load_checkpoint(model, checkpoint, map_location='cpu')
# Weights converted from elsewhere may not have meta fields.
checkpoint_meta = checkpoint.get('meta', {})
# save the dataset_meta in the model for convenience
if 'dataset_meta' in checkpoint_meta:
# mmdet 3.x
model.dataset_meta = checkpoint_meta['dataset_meta']
elif 'CLASSES' in checkpoint_meta:
# < mmdet 3.x
classes = checkpoint_meta['CLASSES']
model.dataset_meta = {'CLASSES': classes, 'PALETTE': palette}
else:
warnings.simplefilter('once')
warnings.warn(
'dataset_meta or class names are not saved in the '
'checkpoint\'s meta data, use COCO classes by default.')
model.dataset_meta = {
'CLASSES': get_classes('coco'),
'PALETTE': palette
}
model.cfg = config # save the config in the model for convenience
model.to(device)
model.eval()
return model
def reshape_transform(feats: Union[Tensor, List[Tensor]],
max_shape: Tuple[int, int] = (20, 20),
is_need_grad: bool = False):
"""Reshape and aggregate feature maps when the input is a multi-layer
feature map.
Takes these tensors with different sizes, resizes them to a common shape,
and concatenates them.
"""
if len(max_shape) == 1:
max_shape = max_shape * 2
if isinstance(feats, torch.Tensor):
feats = [feats]
else:
if is_need_grad:
raise NotImplementedError('The `grad_base` method does not '
'support output multi-activation layers')
max_h = max([im.shape[-2] for im in feats])
max_w = max([im.shape[-1] for im in feats])
if -1 in max_shape:
max_shape = (max_h, max_w)
else:
max_shape = (min(max_h, max_shape[0]), min(max_w, max_shape[1]))
activations = []
for feat in feats:
activations.append(
torch.nn.functional.interpolate(
torch.abs(feat), max_shape, mode='bilinear'))
activations = torch.cat(activations, axis=1)
return activations
class BoxAMDetectorWrapper(nn.Module):
"""Wrap the mmdet model class to facilitate handling of non-tensor
situations during inference."""
def __init__(self,
cfg: ConfigType,
checkpoint: str,
score_thr: float,
device: str = 'cuda:0'):
super().__init__()
self.cfg = cfg
self.device = device
self.score_thr = score_thr
self.checkpoint = checkpoint
self.detector = init_detector(self.cfg, self.checkpoint, device=device)
pipeline_cfg = copy.deepcopy(self.cfg.test_dataloader.dataset.pipeline)
pipeline_cfg[0].type = 'mmdet.LoadImageFromNDArray'
new_test_pipeline = []
for pipeline in pipeline_cfg:
if not pipeline['type'].endswith('LoadAnnotations'):
new_test_pipeline.append(pipeline)
self.test_pipeline = Compose(new_test_pipeline)
self.is_need_loss = False
self.input_data = None
self.image = None
def need_loss(self, is_need_loss: bool):
"""Grad-based methods require loss."""
self.is_need_loss = is_need_loss
def set_input_data(self,
image: np.ndarray,
pred_instances: Optional[InstanceData] = None):
"""Set the input data to be used in the next step."""
self.image = image
if self.is_need_loss:
assert pred_instances is not None
pred_instances = pred_instances.numpy()
data = dict(
img=self.image,
img_id=0,
gt_bboxes=pred_instances.bboxes,
gt_bboxes_labels=pred_instances.labels)
data = self.test_pipeline(data)
else:
data = dict(img=self.image, img_id=0)
data = self.test_pipeline(data)
data['inputs'] = [data['inputs']]
data['data_samples'] = [data['data_samples']]
self.input_data = data
def __call__(self, *args, **kwargs):
assert self.input_data is not None
if self.is_need_loss:
# Maybe this is a direction that can be optimized
# self.detector.init_weights()
if hasattr(self.detector.bbox_head, 'featmap_sizes'):
# Prevent the model algorithm error when calculating loss
self.detector.bbox_head.featmap_sizes = None
data_ = {}
data_['inputs'] = [self.input_data['inputs']]
data_['data_samples'] = [self.input_data['data_samples']]
data = self.detector.data_preprocessor(data_, training=False)
loss = self.detector._run_forward(data, mode='loss')
if hasattr(self.detector.bbox_head, 'featmap_sizes'):
self.detector.bbox_head.featmap_sizes = None
return [loss]
else:
with torch.no_grad():
results = self.detector.test_step(self.input_data)
return results
class BoxAMDetectorVisualizer:
"""Box AM visualization class."""
def __init__(self,
method_class,
model: nn.Module,
target_layers: List,
reshape_transform: Optional[Callable] = None,
is_need_grad: bool = False,
extra_params: Optional[dict] = None):
self.target_layers = target_layers
self.reshape_transform = reshape_transform
self.is_need_grad = is_need_grad
if method_class.__name__ == 'AblationCAM':
batch_size = extra_params.get('batch_size', 1)
ratio_channels_to_ablate = extra_params.get(
'ratio_channels_to_ablate', 1.)
self.cam = AblationCAM(
model,
target_layers,
use_cuda=True if 'cuda' in model.device else False,
reshape_transform=reshape_transform,
batch_size=batch_size,
ablation_layer=extra_params['ablation_layer'],
ratio_channels_to_ablate=ratio_channels_to_ablate)
else:
self.cam = method_class(
model,
target_layers,
use_cuda=True if 'cuda' in model.device else False,
reshape_transform=reshape_transform,
)
if self.is_need_grad:
self.cam.activations_and_grads.release()
self.classes = model.detector.dataset_meta['CLASSES']
self.COLORS = np.random.uniform(0, 255, size=(len(self.classes), 3))
def switch_activations_and_grads(self, model) -> None:
"""In the grad-based method, we need to switch
``ActivationsAndGradients`` layer, otherwise an error will occur."""
self.cam.model = model
if self.is_need_grad is True:
self.cam.activations_and_grads = ActivationsAndGradients(
model, self.target_layers, self.reshape_transform)
self.is_need_grad = False
else:
self.cam.activations_and_grads.release()
self.is_need_grad = True
def __call__(self, img, targets, aug_smooth=False, eigen_smooth=False):
img = torch.from_numpy(img)[None].permute(0, 3, 1, 2)
return self.cam(img, targets, aug_smooth, eigen_smooth)[0, :]
def show_am(self,
image: np.ndarray,
pred_instance: InstanceData,
grayscale_am: np.ndarray,
with_norm_in_bboxes: bool = False):
"""Normalize the AM to be in the range [0, 1] inside every bounding
boxes, and zero outside of the bounding boxes."""
boxes = pred_instance.bboxes
labels = pred_instance.labels
if with_norm_in_bboxes is True:
boxes = boxes.astype(np.int32)
renormalized_am = np.zeros(grayscale_am.shape, dtype=np.float32)
images = []
for x1, y1, x2, y2 in boxes:
img = renormalized_am * 0
img[y1:y2, x1:x2] = scale_cam_image(
[grayscale_am[y1:y2, x1:x2].copy()])[0]
images.append(img)
renormalized_am = np.max(np.float32(images), axis=0)
renormalized_am = scale_cam_image([renormalized_am])[0]
else:
renormalized_am = grayscale_am
am_image_renormalized = show_cam_on_image(
image / 255, renormalized_am, use_rgb=False)
image_with_bounding_boxes = self._draw_boxes(
boxes, labels, am_image_renormalized, pred_instance.get('scores'))
return image_with_bounding_boxes
def _draw_boxes(self,
boxes: List,
labels: List,
image: np.ndarray,
scores: Optional[List] = None):
"""draw boxes on image."""
for i, box in enumerate(boxes):
label = labels[i]
color = self.COLORS[label]
cv2.rectangle(image, (int(box[0]), int(box[1])),
(int(box[2]), int(box[3])), color, 2)
if scores is not None:
score = scores[i]
text = str(self.classes[label]) + ': ' + str(
round(score * 100, 1))
else:
text = self.classes[label]
cv2.putText(
image,
text, (int(box[0]), int(box[1] - 5)),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
color,
1,
lineType=cv2.LINE_AA)
return image
class DetAblationLayer(AblationLayer):
"""Det AblationLayer."""
def __init__(self):
super().__init__()
self.activations = None
def set_next_batch(self, input_batch_index, activations,
num_channels_to_ablate):
"""Extract the next batch member from activations, and repeat it
num_channels_to_ablate times."""
if isinstance(activations, torch.Tensor):
return super().set_next_batch(input_batch_index, activations,
num_channels_to_ablate)
self.activations = []
for activation in activations:
activation = activation[
input_batch_index, :, :, :].clone().unsqueeze(0)
self.activations.append(
activation.repeat(num_channels_to_ablate, 1, 1, 1))
def __call__(self, x):
"""Go over the activation indices to be ablated, stored in
self.indices."""
result = self.activations
if isinstance(result, torch.Tensor):
return super().__call__(x)
channel_cumsum = np.cumsum([r.shape[1] for r in result])
num_channels_to_ablate = result[0].size(0) # batch
for i in range(num_channels_to_ablate):
pyramid_layer = bisect.bisect_right(channel_cumsum,
self.indices[i])
if pyramid_layer > 0:
index_in_pyramid_layer = self.indices[i] - channel_cumsum[
pyramid_layer - 1]
else:
index_in_pyramid_layer = self.indices[i]
result[pyramid_layer][i, index_in_pyramid_layer, :, :] = -1000
return result
class DetBoxScoreTarget:
"""Det Score calculation class.
In the case of the grad-free method, the calculation method is that
for every original detected bounding box specified in "bboxes",
assign a score on how the current bounding boxes match it,
1. In Bbox IoU
2. In the classification score.
3. In Mask IoU if ``segms`` exist.
If there is not a large enough overlap, or the category changed,
assign a score of 0. The total score is the sum of all the box scores.
In the case of the grad-based method, the calculation method is
the sum of losses after excluding a specific key.
"""
def __init__(self,
pred_instance: InstanceData,
match_iou_thr: float = 0.5,
device: str = 'cuda:0',
ignore_loss_params: Optional[List] = None):
self.focal_bboxes = pred_instance.bboxes
self.focal_labels = pred_instance.labels
self.match_iou_thr = match_iou_thr
self.device = device
self.ignore_loss_params = ignore_loss_params
if ignore_loss_params is not None:
assert isinstance(self.ignore_loss_params, list)
def __call__(self, results):
output = torch.tensor([0.], device=self.device)
if 'loss_cls' in results:
# grad-based method
# results is dict
for loss_key, loss_value in results.items():
if 'loss' not in loss_key or \
loss_key in self.ignore_loss_params:
continue
if isinstance(loss_value, list):
output += sum(loss_value)
else:
output += loss_value
return output
else:
# grad-free method
# results is DetDataSample
pred_instances = results.pred_instances
if len(pred_instances) == 0:
return output
pred_bboxes = pred_instances.bboxes
pred_scores = pred_instances.scores
pred_labels = pred_instances.labels
for focal_box, focal_label in zip(self.focal_bboxes,
self.focal_labels):
ious = torchvision.ops.box_iou(focal_box[None],
pred_bboxes[..., :4])
index = ious.argmax()
if ious[0, index] > self.match_iou_thr and pred_labels[
index] == focal_label:
# TODO: Adaptive adjustment of weights based on algorithms
score = ious[0, index] + pred_scores[index]
output = output + score
return output
class SpatialBaseCAM(BaseCAM):
"""CAM that maintains spatial information.
Gradients are often averaged over the spatial dimension in CAM
visualization for classification, but this is unreasonable in detection
tasks. There is no need to average the gradients in the detection task.
"""
def get_cam_image(self,
input_tensor: torch.Tensor,
target_layer: torch.nn.Module,
targets: List[torch.nn.Module],
activations: torch.Tensor,
grads: torch.Tensor,
eigen_smooth: bool = False) -> np.ndarray:
weights = self.get_cam_weights(input_tensor, target_layer, targets,
activations, grads)
weighted_activations = weights * activations
if eigen_smooth:
cam = get_2d_projection(weighted_activations)
else:
cam = weighted_activations.sum(axis=1)
return cam
class GradCAM(SpatialBaseCAM, Base_GradCAM):
"""Gradients are no longer averaged over the spatial dimension."""
def get_cam_weights(self, input_tensor, target_layer, target_category,
activations, grads):
return grads
class GradCAMPlusPlus(SpatialBaseCAM, Base_GradCAMPlusPlus):
"""Gradients are no longer averaged over the spatial dimension."""
def get_cam_weights(self, input_tensor, target_layers, target_category,
activations, grads):
grads_power_2 = grads**2
grads_power_3 = grads_power_2 * grads
# Equation 19 in https://arxiv.org/abs/1710.11063
sum_activations = np.sum(activations, axis=(2, 3))
eps = 0.000001
aij = grads_power_2 / (
2 * grads_power_2 +
sum_activations[:, :, None, None] * grads_power_3 + eps)
# Now bring back the ReLU from eq.7 in the paper,
# And zero out aijs where the activations are 0
aij = np.where(grads != 0, aij, 0)
weights = np.maximum(grads, 0) * aij
return weights