mirror of https://github.com/open-mmlab/mmyolo.git
[Docs] Fix some errors in `config.md` and `how_to.md` (#200)
* Update config.md * Update docs/zh_cn/user_guides/config.md Co-authored-by: Haian Huang(深度眸) <1286304229@qq.com> * [Docs] Fix some error in how_to.md * Update docs/zh_cn/advanced_guides/how_to.md Co-authored-by: Range King <RangeKingHZ@gmail.com> * Update docs/zh_cn/advanced_guides/how_to.md Co-authored-by: Range King <RangeKingHZ@gmail.com> * Update docs/zh_cn/advanced_guides/how_to.md Co-authored-by: Range King <RangeKingHZ@gmail.com> * Update docs/zh_cn/advanced_guides/how_to.md Co-authored-by: HinGwenWoong <peterhuang0323@qq.com> * Update yolov5_head.py * Update yolox_head.py * Update yolov5_head.py * Update yolox_head.py * Update docs/zh_cn/advanced_guides/how_to.md Co-authored-by: Haian Huang(深度眸) <1286304229@qq.com> * Update how_to.md * Update yolov5_head.py * Update yolox_head.py Co-authored-by: Haian Huang(深度眸) <1286304229@qq.com> Co-authored-by: Range King <RangeKingHZ@gmail.com> Co-authored-by: HinGwenWoong <peterhuang0323@qq.com>pull/249/head
parent
5874e4108e
commit
a381c0f932
|
@ -30,6 +30,8 @@ If you want to stack multiple Necks, you can directly set the Neck parameters in
|
|||
```python
|
||||
_base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'
|
||||
|
||||
deepen_factor = _base_.deepen_factor
|
||||
widen_factor = _base_.widen_factor
|
||||
model = dict(
|
||||
type='YOLODetector',
|
||||
neck=[
|
||||
|
@ -38,7 +40,7 @@ model = dict(
|
|||
deepen_factor=deepen_factor,
|
||||
widen_factor=widen_factor,
|
||||
in_channels=[256, 512, 1024],
|
||||
out_channels=[256, 512, 1024],
|
||||
out_channels=[256, 512, 1024], # The out_channels is controlled by widen_factor,so the YOLOv5PAFPN's out_channels equls to out_channels * widen_factor
|
||||
num_csp_blocks=3,
|
||||
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
|
||||
act_cfg=dict(type='SiLU', inplace=True)),
|
||||
|
@ -55,4 +57,6 @@ model = dict(
|
|||
# disable zero_init_offset to follow official implementation
|
||||
zero_init_offset=False)
|
||||
]
|
||||
bbox_head=dict(head_module=dict(in_channels=[512,512,512])) # The out_channels is controlled by widen_factor,so the YOLOv5HeadModuled in_channels * widen_factor equals to the last neck's out_channels
|
||||
)
|
||||
```
|
||||
|
|
|
@ -30,6 +30,8 @@ model = dict(
|
|||
```python
|
||||
_base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'
|
||||
|
||||
deepen_factor = _base_.deepen_factor
|
||||
widen_factor = _base_.widen_factor
|
||||
model = dict(
|
||||
type='YOLODetector',
|
||||
neck=[
|
||||
|
@ -38,7 +40,7 @@ model = dict(
|
|||
deepen_factor=deepen_factor,
|
||||
widen_factor=widen_factor,
|
||||
in_channels=[256, 512, 1024],
|
||||
out_channels=[256, 512, 1024],
|
||||
out_channels=[256, 512, 1024], # 因为 out_channels 由 widen_factor 控制,YOLOv5PAFPN 的 out_channels = out_channels * widen_factor
|
||||
num_csp_blocks=3,
|
||||
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
|
||||
act_cfg=dict(type='SiLU', inplace=True)),
|
||||
|
@ -55,4 +57,6 @@ model = dict(
|
|||
# disable zero_init_offset to follow official implementation
|
||||
zero_init_offset=False)
|
||||
]
|
||||
bbox_head=dict(head_module=dict(in_channels=[512,512,512])) # 因为 out_channels 由 widen_factor 控制,YOLOv5HeadModuled 的 in_channels * widen_factor 才会等于最后一个 neck 的 out_channels
|
||||
)
|
||||
```
|
||||
|
|
|
@ -529,7 +529,7 @@ pre_transform = _base_.pre_transform # 变量 pre_transform 等于 _base_ 中定
|
|||
|
||||
- 更新配置列表中的键
|
||||
|
||||
在配置文件里,一些字典型的配置被包含在列表中。例如,数据训练流程 `data.train.pipeline` 通常是一个列表,比如 `[dict(type='LoadImageFromFile'), ...]`。如果需要将 `'LoadImageFromFile'` 改成 `'LoadImageFromWebcam'`,需要写成下述形式:`--cfg-options data.train.pipeline.0.type=LoadImageFromNDArray`.
|
||||
在配置文件里,一些字典型的配置被包含在列表中。例如,数据训练流程 `data.train.pipeline` 通常是一个列表,比如 `[dict(type='LoadImageFromFile'), ...]`。如果需要将 `'LoadImageFromFile'` 改成 `'LoadImageFromNDArray'`,需要写成下述形式:`--cfg-options data.train.pipeline.0.type=LoadImageFromNDArray`.
|
||||
|
||||
- 更新列表或元组的值
|
||||
|
||||
|
|
|
@ -27,7 +27,8 @@ class YOLOv5HeadModule(BaseModule):
|
|||
Args:
|
||||
num_classes (int): Number of categories excluding the background
|
||||
category.
|
||||
in_channels (int): Number of channels in the input feature map.
|
||||
in_channels (Union[int, Sequence]): Number of channels in the input
|
||||
feature map.
|
||||
widen_factor (float): Width multiplier, multiply number of
|
||||
channels in each layer by this amount. Default: 1.0.
|
||||
num_base_priors:int: The number of priors (points) at a point
|
||||
|
|
|
@ -27,7 +27,8 @@ class YOLOXHeadModule(BaseModule):
|
|||
Args:
|
||||
num_classes (int): Number of categories excluding the background
|
||||
category.
|
||||
in_channels (int): Number of channels in the input feature map.
|
||||
in_channels (Union[int, Sequence]): Number of channels in the input
|
||||
feature map.
|
||||
widen_factor (float): Width multiplier, multiply number of
|
||||
channels in each layer by this amount. Default: 1.0.
|
||||
num_base_priors (int): The number of priors (points) at a point
|
||||
|
|
Loading…
Reference in New Issue