Add Circleci project (#57)

* Add .circleci/config.yml

* Add circleci

* Add circleci

* Updated config.yml

* format code

* format code

* fix
pull/58/merge
Haian Huang(深度眸) 2022-09-21 16:52:34 +08:00 committed by GitHub
parent 45f61c38f0
commit c068dcdacc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 234 additions and 2 deletions

View File

@ -0,0 +1,34 @@
version: 2.1
# this allows you to use CircleCI's dynamic configuration feature
setup: true
# the path-filtering orb is required to continue a pipeline based on
# the path of an updated fileset
orbs:
path-filtering: circleci/path-filtering@0.1.2
workflows:
# the always-run workflow is always triggered, regardless of the pipeline parameters.
always-run:
jobs:
# the path-filtering/filter job determines which pipeline
# parameters to update.
- path-filtering/filter:
name: check-updated-files
# 3-column, whitespace-delimited mapping. One mapping per
# line:
# <regex path-to-test> <parameter-to-set> <value-of-pipeline-parameter>
mapping: |
mmyolo/.* lint_only false
requirements/.* lint_only false
tests/.* lint_only false
tools/.* lint_only false
configs/.* lint_only false
.circleci/.* lint_only false
base-revision: main
# this is the path of the configuration we should trigger once
# path filtering and pipeline parameter value updates are
# complete. In this case, we are using the parent dynamic
# configuration itself.
config-path: .circleci/test.yml

View File

@ -0,0 +1,11 @@
ARG PYTORCH="1.8.1"
ARG CUDA="10.2"
ARG CUDNN="7"
FROM pytorch/pytorch:${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel
# To fix GPG key error when running apt-get update
RUN apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/3bf863cc.pub
RUN apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/7fa2af80.pub
RUN apt-get update && apt-get install -y ninja-build libglib2.0-0 libsm6 libxrender-dev libxext6 libgl1-mesa-glx

186
.circleci/test.yml 100644
View File

@ -0,0 +1,186 @@
version: 2.1
# the default pipeline parameters, which will be updated according to
# the results of the path-filtering orb
parameters:
lint_only:
type: boolean
default: true
jobs:
lint:
docker:
- image: cimg/python:3.7.4
steps:
- checkout
- run:
name: Install pre-commit hook
command: |
pip install pre-commit
pre-commit install
- run:
name: Linting
command: pre-commit run --all-files
- run:
name: Check docstring coverage
command: |
pip install interrogate
interrogate -v --ignore-init-method --ignore-module --ignore-nested-functions --ignore-magic --ignore-regex "__repr__" --fail-under 90 mmyolo
build_cpu:
parameters:
# The python version must match available image tags in
# https://circleci.com/developer/images/image/cimg/python
python:
type: string
torch:
type: string
torchvision:
type: string
docker:
- image: cimg/python:<< parameters.python >>
resource_class: large
steps:
- checkout
- run:
name: Install Libraries
command: |
sudo apt-get update
sudo apt-get install -y ninja-build libglib2.0-0 libsm6 libxrender-dev libxext6 libgl1-mesa-glx libjpeg-dev zlib1g-dev libtinfo-dev libncurses5
- run:
name: Configure Python & pip
command: |
pip install --upgrade pip
pip install wheel
- run:
name: Install PyTorch
command: |
python -V
pip install torch==<< parameters.torch >>+cpu torchvision==<< parameters.torchvision >>+cpu -f https://download.pytorch.org/whl/torch_stable.html
- run:
name: Install mmyolo dependencies
command: |
pip install git+https://github.com/open-mmlab/mmengine.git@main
pip install -U openmim
mim install 'mmcv >= 2.0.0rc1'
pip install git+https://github.com/open-mmlab/mmdetection.git@dev-3.x
pip install -r requirements/albu.txt
pip install -r requirements/tests.txt
- run:
name: Build and install
command: |
pip install -e .
- run:
name: Run unittests
command: |
coverage run --branch --source mmyolo -m pytest tests/
coverage xml
coverage report -m
build_cuda:
parameters:
torch:
type: string
cuda:
type: enum
enum: ["10.1", "10.2", "11.1","11.0"]
cudnn:
type: integer
default: 7
machine:
image: ubuntu-2004-cuda-11.4:202110-01
# docker_layer_caching: true
resource_class: gpu.nvidia.small
steps:
- checkout
- run:
# Cloning repos in VM since Docker doesn't have access to the private key
name: Clone Repos
command: |
git clone -b main --depth 1 https://github.com/open-mmlab/mmengine.git /home/circleci/mmengine
git clone -b dev-3.x --depth 1 https://github.com/open-mmlab/mmdetection.git /home/circleci/mmdetection
- run:
name: Build Docker image
command: |
docker build .circleci/docker -t mmyolo:gpu --build-arg PYTORCH=<< parameters.torch >> --build-arg CUDA=<< parameters.cuda >> --build-arg CUDNN=<< parameters.cudnn >>
docker run --gpus all -t -d -v /home/circleci/project:/mmyolo -v /home/circleci/mmengine:/mmengine -v /home/circleci/mmdetection:/mmdetection -w /mmyolo --name mmyolo mmyolo:gpu
- run:
name: Install mmyolo dependencies
command: |
docker exec mmyolo pip install -e /mmengine
docker exec mmyolo pip install -U openmim
docker exec mmyolo mim install 'mmcv >= 2.0.0rc1'
docker exec mmyolo pip install -e /mmdetection
docker exec mmyolo pip install -r requirements/albu.txt
docker exec mmyolo pip install -r requirements/tests.txt
- run:
name: Build and install
command: |
docker exec mmyolo pip install -e .
- run:
name: Run unittests
command: |
docker exec mmyolo pytest tests/
workflows:
pr_stage_lint:
when: << pipeline.parameters.lint_only >>
jobs:
- lint:
name: lint
filters:
branches:
ignore:
- main
pr_stage_test:
when:
not:
<< pipeline.parameters.lint_only >>
jobs:
- lint:
name: lint
filters:
branches:
ignore:
- main
- build_cpu:
name: minimum_version_cpu
torch: 1.7.0
torchvision: 0.8.1
python: 3.8.0 # The lowest python 3.6.x version available on CircleCI images
requires:
- lint
- build_cpu:
name: maximum_version_cpu
torch: 1.12.1
torchvision: 0.13.1
python: 3.9.0
requires:
- minimum_version_cpu
- hold:
type: approval
requires:
- maximum_version_cpu
- build_cuda:
name: mainstream_version_gpu
torch: 1.8.1
# Use double quotation mark to explicitly specify its type
# as string instead of number
cuda: "10.2"
requires:
- hold
merge_stage_test:
when:
not:
<< pipeline.parameters.lint_only >>
jobs:
- build_cuda:
name: minimum_version_gpu
torch: 1.7.0
# Use double quotation mark to explicitly specify its type
# as string instead of number
cuda: "11.0"
cudnn: 8
filters:
branches:
only:
- main

View File

@ -10,7 +10,7 @@ deepen_factor = 0.33
widen_factor = 0.5
max_epochs = 300
save_epoch_intervals = 10
train_batch_size_per_gpu = 4
train_batch_size_per_gpu = 16
train_num_workers = 8
val_batch_size_per_gpu = 1
val_num_workers = 2

View File

@ -478,7 +478,8 @@ class YOLOv5RandomAffine(BaseTransform):
width (int): Image width.
Returns:
Tuple[np.ndarray, float]: The result of warp_matrix and scaling_ratio.
Tuple[np.ndarray, float]: The result of warp_matrix and
scaling_ratio.
"""
# Rotation
rotation_degree = random.uniform(-self.max_rotate_degree,