mirror of https://github.com/open-mmlab/mmyolo.git
Add Circleci project (#57)
* Add .circleci/config.yml * Add circleci * Add circleci * Updated config.yml * format code * format code * fixpull/58/merge
parent
45f61c38f0
commit
c068dcdacc
|
@ -0,0 +1,34 @@
|
|||
version: 2.1
|
||||
|
||||
# this allows you to use CircleCI's dynamic configuration feature
|
||||
setup: true
|
||||
|
||||
# the path-filtering orb is required to continue a pipeline based on
|
||||
# the path of an updated fileset
|
||||
orbs:
|
||||
path-filtering: circleci/path-filtering@0.1.2
|
||||
|
||||
workflows:
|
||||
# the always-run workflow is always triggered, regardless of the pipeline parameters.
|
||||
always-run:
|
||||
jobs:
|
||||
# the path-filtering/filter job determines which pipeline
|
||||
# parameters to update.
|
||||
- path-filtering/filter:
|
||||
name: check-updated-files
|
||||
# 3-column, whitespace-delimited mapping. One mapping per
|
||||
# line:
|
||||
# <regex path-to-test> <parameter-to-set> <value-of-pipeline-parameter>
|
||||
mapping: |
|
||||
mmyolo/.* lint_only false
|
||||
requirements/.* lint_only false
|
||||
tests/.* lint_only false
|
||||
tools/.* lint_only false
|
||||
configs/.* lint_only false
|
||||
.circleci/.* lint_only false
|
||||
base-revision: main
|
||||
# this is the path of the configuration we should trigger once
|
||||
# path filtering and pipeline parameter value updates are
|
||||
# complete. In this case, we are using the parent dynamic
|
||||
# configuration itself.
|
||||
config-path: .circleci/test.yml
|
|
@ -0,0 +1,11 @@
|
|||
ARG PYTORCH="1.8.1"
|
||||
ARG CUDA="10.2"
|
||||
ARG CUDNN="7"
|
||||
|
||||
FROM pytorch/pytorch:${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel
|
||||
|
||||
# To fix GPG key error when running apt-get update
|
||||
RUN apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/3bf863cc.pub
|
||||
RUN apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/7fa2af80.pub
|
||||
|
||||
RUN apt-get update && apt-get install -y ninja-build libglib2.0-0 libsm6 libxrender-dev libxext6 libgl1-mesa-glx
|
|
@ -0,0 +1,186 @@
|
|||
version: 2.1
|
||||
|
||||
# the default pipeline parameters, which will be updated according to
|
||||
# the results of the path-filtering orb
|
||||
parameters:
|
||||
lint_only:
|
||||
type: boolean
|
||||
default: true
|
||||
|
||||
jobs:
|
||||
lint:
|
||||
docker:
|
||||
- image: cimg/python:3.7.4
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Install pre-commit hook
|
||||
command: |
|
||||
pip install pre-commit
|
||||
pre-commit install
|
||||
- run:
|
||||
name: Linting
|
||||
command: pre-commit run --all-files
|
||||
- run:
|
||||
name: Check docstring coverage
|
||||
command: |
|
||||
pip install interrogate
|
||||
interrogate -v --ignore-init-method --ignore-module --ignore-nested-functions --ignore-magic --ignore-regex "__repr__" --fail-under 90 mmyolo
|
||||
build_cpu:
|
||||
parameters:
|
||||
# The python version must match available image tags in
|
||||
# https://circleci.com/developer/images/image/cimg/python
|
||||
python:
|
||||
type: string
|
||||
torch:
|
||||
type: string
|
||||
torchvision:
|
||||
type: string
|
||||
docker:
|
||||
- image: cimg/python:<< parameters.python >>
|
||||
resource_class: large
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Install Libraries
|
||||
command: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y ninja-build libglib2.0-0 libsm6 libxrender-dev libxext6 libgl1-mesa-glx libjpeg-dev zlib1g-dev libtinfo-dev libncurses5
|
||||
- run:
|
||||
name: Configure Python & pip
|
||||
command: |
|
||||
pip install --upgrade pip
|
||||
pip install wheel
|
||||
- run:
|
||||
name: Install PyTorch
|
||||
command: |
|
||||
python -V
|
||||
pip install torch==<< parameters.torch >>+cpu torchvision==<< parameters.torchvision >>+cpu -f https://download.pytorch.org/whl/torch_stable.html
|
||||
- run:
|
||||
name: Install mmyolo dependencies
|
||||
command: |
|
||||
pip install git+https://github.com/open-mmlab/mmengine.git@main
|
||||
pip install -U openmim
|
||||
mim install 'mmcv >= 2.0.0rc1'
|
||||
pip install git+https://github.com/open-mmlab/mmdetection.git@dev-3.x
|
||||
pip install -r requirements/albu.txt
|
||||
pip install -r requirements/tests.txt
|
||||
- run:
|
||||
name: Build and install
|
||||
command: |
|
||||
pip install -e .
|
||||
- run:
|
||||
name: Run unittests
|
||||
command: |
|
||||
coverage run --branch --source mmyolo -m pytest tests/
|
||||
coverage xml
|
||||
coverage report -m
|
||||
build_cuda:
|
||||
parameters:
|
||||
torch:
|
||||
type: string
|
||||
cuda:
|
||||
type: enum
|
||||
enum: ["10.1", "10.2", "11.1","11.0"]
|
||||
cudnn:
|
||||
type: integer
|
||||
default: 7
|
||||
machine:
|
||||
image: ubuntu-2004-cuda-11.4:202110-01
|
||||
# docker_layer_caching: true
|
||||
resource_class: gpu.nvidia.small
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
# Cloning repos in VM since Docker doesn't have access to the private key
|
||||
name: Clone Repos
|
||||
command: |
|
||||
git clone -b main --depth 1 https://github.com/open-mmlab/mmengine.git /home/circleci/mmengine
|
||||
git clone -b dev-3.x --depth 1 https://github.com/open-mmlab/mmdetection.git /home/circleci/mmdetection
|
||||
- run:
|
||||
name: Build Docker image
|
||||
command: |
|
||||
docker build .circleci/docker -t mmyolo:gpu --build-arg PYTORCH=<< parameters.torch >> --build-arg CUDA=<< parameters.cuda >> --build-arg CUDNN=<< parameters.cudnn >>
|
||||
docker run --gpus all -t -d -v /home/circleci/project:/mmyolo -v /home/circleci/mmengine:/mmengine -v /home/circleci/mmdetection:/mmdetection -w /mmyolo --name mmyolo mmyolo:gpu
|
||||
- run:
|
||||
name: Install mmyolo dependencies
|
||||
command: |
|
||||
docker exec mmyolo pip install -e /mmengine
|
||||
docker exec mmyolo pip install -U openmim
|
||||
docker exec mmyolo mim install 'mmcv >= 2.0.0rc1'
|
||||
docker exec mmyolo pip install -e /mmdetection
|
||||
docker exec mmyolo pip install -r requirements/albu.txt
|
||||
docker exec mmyolo pip install -r requirements/tests.txt
|
||||
- run:
|
||||
name: Build and install
|
||||
command: |
|
||||
docker exec mmyolo pip install -e .
|
||||
- run:
|
||||
name: Run unittests
|
||||
command: |
|
||||
docker exec mmyolo pytest tests/
|
||||
|
||||
workflows:
|
||||
pr_stage_lint:
|
||||
when: << pipeline.parameters.lint_only >>
|
||||
jobs:
|
||||
- lint:
|
||||
name: lint
|
||||
filters:
|
||||
branches:
|
||||
ignore:
|
||||
- main
|
||||
|
||||
pr_stage_test:
|
||||
when:
|
||||
not:
|
||||
<< pipeline.parameters.lint_only >>
|
||||
jobs:
|
||||
- lint:
|
||||
name: lint
|
||||
filters:
|
||||
branches:
|
||||
ignore:
|
||||
- main
|
||||
- build_cpu:
|
||||
name: minimum_version_cpu
|
||||
torch: 1.7.0
|
||||
torchvision: 0.8.1
|
||||
python: 3.8.0 # The lowest python 3.6.x version available on CircleCI images
|
||||
requires:
|
||||
- lint
|
||||
- build_cpu:
|
||||
name: maximum_version_cpu
|
||||
torch: 1.12.1
|
||||
torchvision: 0.13.1
|
||||
python: 3.9.0
|
||||
requires:
|
||||
- minimum_version_cpu
|
||||
- hold:
|
||||
type: approval
|
||||
requires:
|
||||
- maximum_version_cpu
|
||||
- build_cuda:
|
||||
name: mainstream_version_gpu
|
||||
torch: 1.8.1
|
||||
# Use double quotation mark to explicitly specify its type
|
||||
# as string instead of number
|
||||
cuda: "10.2"
|
||||
requires:
|
||||
- hold
|
||||
merge_stage_test:
|
||||
when:
|
||||
not:
|
||||
<< pipeline.parameters.lint_only >>
|
||||
jobs:
|
||||
- build_cuda:
|
||||
name: minimum_version_gpu
|
||||
torch: 1.7.0
|
||||
# Use double quotation mark to explicitly specify its type
|
||||
# as string instead of number
|
||||
cuda: "11.0"
|
||||
cudnn: 8
|
||||
filters:
|
||||
branches:
|
||||
only:
|
||||
- main
|
|
@ -10,7 +10,7 @@ deepen_factor = 0.33
|
|||
widen_factor = 0.5
|
||||
max_epochs = 300
|
||||
save_epoch_intervals = 10
|
||||
train_batch_size_per_gpu = 4
|
||||
train_batch_size_per_gpu = 16
|
||||
train_num_workers = 8
|
||||
val_batch_size_per_gpu = 1
|
||||
val_num_workers = 2
|
||||
|
|
|
@ -478,7 +478,8 @@ class YOLOv5RandomAffine(BaseTransform):
|
|||
width (int): Image width.
|
||||
|
||||
Returns:
|
||||
Tuple[np.ndarray, float]: The result of warp_matrix and scaling_ratio.
|
||||
Tuple[np.ndarray, float]: The result of warp_matrix and
|
||||
scaling_ratio.
|
||||
"""
|
||||
# Rotation
|
||||
rotation_degree = random.uniform(-self.max_rotate_degree,
|
||||
|
|
Loading…
Reference in New Issue