Fix copypaste in yolov5-ins l/x config (#756)

* [Fix] fix copypaste in yolov5-ins l/x config

* fix

* format

* update

* update

---------

Co-authored-by: huanghaian <huanghaian@sensetime.com>
pull/778/head
JosonChan 2023-05-10 12:16:38 +08:00 committed by GitHub
parent 887d3ddfdc
commit e8203150f5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 109 additions and 8 deletions

View File

@ -61,11 +61,13 @@ YOLOv5-l-P6 model structure
| YOLOv5-s | P5 | 640 | Yes | Yes | 4.8 | 38.1 | 32.0 | [config](./ins_seg/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_coco_instance.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_coco_instance_20230426_012542-3e570436.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_coco_instance_20230426_012542.log.json) |
| YOLOv5-s(non-overlap) | P5 | 640 | Yes | Yes | 4.8 | 38.0 | 32.1 | [config](./ins_seg/yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance/yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance_20230424_104642-6780d34e.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance/yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance_20230424_104642.log.json) |
| YOLOv5-m | P5 | 640 | Yes | Yes | 7.3 | 45.1 | 37.3 | [config](./ins_seg/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance_20230424_111529-ef5ba1a9.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance_20230424_111529.log.json) |
| YOLOv5-l | P5 | 640 | Yes | Yes | 10.7 | 48.8 | 39.9 | [config](./ins_seg/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance_20230508_104049-daa09f70.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance_20230508_104049.log.json) |
| YOLOv5-x | P5 | 640 | Yes | Yes | 15.0 | 50.6 | 41.4 | [config](./ins_seg/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance_20230508_103925-a260c798.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance_20230508_103925.log.json) |
**Note**:
1. `Non-overlap` refers to the instance-level masks being stored in the format (num_instances, h, w) instead of (h, w). Storing masks in overlap format consumes less memory and GPU memory.
2. We found that the mAP of the N/S/M model is higher than the official version, but the L/X model is lower than the official version. We will resolve this issue as soon as possible.
2. For the M model, the `affine_scale` parameter should be 0.9, but due to some reason, we set it to 0.5 and found that the mAP did not change. Therefore, the released M model has an `affine_scale` parameter of 0.5, which is inconsistent with the value of 0.9 in the configuration.
### VOC

View File

@ -1,8 +1,18 @@
_base_ = './yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance.py' # noqa
# This config use refining bbox and `YOLOv5CopyPaste`.
# Refining bbox means refining bbox by mask while loading annotations and
# transforming after `YOLOv5RandomAffine`
# ========================modified parameters======================
deepen_factor = 1.0
widen_factor = 1.0
mixup_prob = 0.1
copypaste_prob = 0.1
# =======================Unmodified in most cases==================
img_scale = _base_.img_scale
model = dict(
backbone=dict(
deepen_factor=deepen_factor,
@ -13,3 +23,59 @@ model = dict(
widen_factor=widen_factor,
),
bbox_head=dict(head_module=dict(widen_factor=widen_factor)))
pre_transform = _base_.pre_transform
albu_train_transforms = _base_.albu_train_transforms
mosaic_affine_pipeline = [
dict(
type='Mosaic',
img_scale=img_scale,
pad_val=114.0,
pre_transform=pre_transform),
dict(type='YOLOv5CopyPaste', prob=copypaste_prob),
dict(
type='YOLOv5RandomAffine',
max_rotate_degree=0.0,
max_shear_degree=0.0,
scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale),
border=(-img_scale[0] // 2, -img_scale[1] // 2),
border_val=(114, 114, 114),
min_area_ratio=_base_.min_area_ratio,
max_aspect_ratio=_base_.max_aspect_ratio,
use_mask_refine=_base_.use_mask2refine),
]
# enable mixup
train_pipeline = [
*pre_transform,
*mosaic_affine_pipeline,
dict(
type='YOLOv5MixUp',
prob=mixup_prob,
pre_transform=[*pre_transform, *mosaic_affine_pipeline]),
# TODO: support mask transform in albu
# Geometric transformations are not supported in albu now.
dict(
type='mmdet.Albu',
transforms=albu_train_transforms,
bbox_params=dict(
type='BboxParams',
format='pascal_voc',
label_fields=['gt_bboxes_labels', 'gt_ignore_flags']),
keymap={
'img': 'image',
'gt_bboxes': 'bboxes'
}),
dict(type='YOLOv5HSVRandomAug'),
dict(type='mmdet.RandomFlip', prob=0.5),
dict(
type='Polygon2Mask',
downsample_ratio=_base_.downsample_ratio,
mask_overlap=_base_.mask_overlap),
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
'flip_direction'))
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))

View File

@ -4,9 +4,10 @@ _base_ = './yolov5_ins_s-v61_syncbn_fast_8xb16-300e_coco_instance.py' # noqa
deepen_factor = 0.67
widen_factor = 0.75
lr_factor = 0.1
affine_scale = 0.9
loss_cls_weight = 0.3
loss_obj_weight = 0.7
affine_scale = 0.9
mixup_prob = 0.1
# =======================Unmodified in most cases==================
@ -43,8 +44,8 @@ mosaic_affine_pipeline = [
type='YOLOv5RandomAffine',
max_rotate_degree=0.0,
max_shear_degree=0.0,
scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale),
border=(-_base_.img_scale[0] // 2, -_base_.img_scale[1] // 2),
scaling_ratio_range=(1 - affine_scale, 1 + affine_scale),
border=(-img_scale[0] // 2, -img_scale[1] // 2),
border_val=(114, 114, 114),
min_area_ratio=_base_.min_area_ratio,
max_aspect_ratio=_base_.max_aspect_ratio,

View File

@ -88,7 +88,7 @@ train_pipeline = [
label_fields=['gt_bboxes_labels', 'gt_ignore_flags']),
keymap={
'img': 'image',
'gt_bboxes': 'bboxes',
'gt_bboxes': 'bboxes'
}),
dict(type='YOLOv5HSVRandomAug'),
dict(type='mmdet.RandomFlip', prob=0.5),

View File

@ -1,4 +1,4 @@
_base_ = './yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance.py' # noqa
_base_ = './yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance.py' # noqa
deepen_factor = 1.33
widen_factor = 1.25

View File

@ -296,9 +296,9 @@ Models:
Metrics:
mask AP: 32.1
Weights: https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance/yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance_20230424_104642-6780d34e.pth
- Name: yolov5_ins_m-v61_syncbn_fast=_8xb16-300e_coco_instance
- Name: yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance
In Collection: YOLOv5
Config: configs/yolov5/ins_seg/yolov5_ins_m-v61_syncbn_fast=_8xb16-300e_coco_instance.py
Config: configs/yolov5/ins_seg/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance.py
Metadata:
Training Memory (GB): 7.3
Epochs: 300
@ -312,3 +312,35 @@ Models:
Metrics:
mask AP: 37.3
Weights: https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance_20230424_111529-ef5ba1a9.pth
- Name: yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance
In Collection: YOLOv5
Config: configs/yolov5/ins_seg/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance.py
Metadata:
Training Memory (GB): 10.7
Epochs: 300
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 48.8
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 39.9
Weights: https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance_20230508_104049-daa09f70.pth
- Name: yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance
In Collection: YOLOv5
Config: configs/yolov5/ins_seg/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance.py
Metadata:
Training Memory (GB): 15.0
Epochs: 300
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 50.6
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 41.4
Weights: https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance_20230508_103925-a260c798.pth