mirror of https://github.com/open-mmlab/mmyolo.git
Fix copypaste in yolov5-ins l/x config (#756)
* [Fix] fix copypaste in yolov5-ins l/x config * fix * format * update * update --------- Co-authored-by: huanghaian <huanghaian@sensetime.com>pull/778/head
parent
887d3ddfdc
commit
e8203150f5
|
@ -61,11 +61,13 @@ YOLOv5-l-P6 model structure
|
|||
| YOLOv5-s | P5 | 640 | Yes | Yes | 4.8 | 38.1 | 32.0 | [config](./ins_seg/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_coco_instance.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_coco_instance_20230426_012542-3e570436.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_coco_instance_20230426_012542.log.json) |
|
||||
| YOLOv5-s(non-overlap) | P5 | 640 | Yes | Yes | 4.8 | 38.0 | 32.1 | [config](./ins_seg/yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance/yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance_20230424_104642-6780d34e.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance/yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance_20230424_104642.log.json) |
|
||||
| YOLOv5-m | P5 | 640 | Yes | Yes | 7.3 | 45.1 | 37.3 | [config](./ins_seg/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance_20230424_111529-ef5ba1a9.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance_20230424_111529.log.json) |
|
||||
| YOLOv5-l | P5 | 640 | Yes | Yes | 10.7 | 48.8 | 39.9 | [config](./ins_seg/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance_20230508_104049-daa09f70.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance_20230508_104049.log.json) |
|
||||
| YOLOv5-x | P5 | 640 | Yes | Yes | 15.0 | 50.6 | 41.4 | [config](./ins_seg/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance.py) | [model](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance_20230508_103925-a260c798.pth) \| [log](https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance_20230508_103925.log.json) |
|
||||
|
||||
**Note**:
|
||||
|
||||
1. `Non-overlap` refers to the instance-level masks being stored in the format (num_instances, h, w) instead of (h, w). Storing masks in overlap format consumes less memory and GPU memory.
|
||||
2. We found that the mAP of the N/S/M model is higher than the official version, but the L/X model is lower than the official version. We will resolve this issue as soon as possible.
|
||||
2. For the M model, the `affine_scale` parameter should be 0.9, but due to some reason, we set it to 0.5 and found that the mAP did not change. Therefore, the released M model has an `affine_scale` parameter of 0.5, which is inconsistent with the value of 0.9 in the configuration.
|
||||
|
||||
### VOC
|
||||
|
||||
|
|
|
@ -1,8 +1,18 @@
|
|||
_base_ = './yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance.py' # noqa
|
||||
|
||||
# This config use refining bbox and `YOLOv5CopyPaste`.
|
||||
# Refining bbox means refining bbox by mask while loading annotations and
|
||||
# transforming after `YOLOv5RandomAffine`
|
||||
# ========================modified parameters======================
|
||||
deepen_factor = 1.0
|
||||
widen_factor = 1.0
|
||||
|
||||
mixup_prob = 0.1
|
||||
copypaste_prob = 0.1
|
||||
|
||||
# =======================Unmodified in most cases==================
|
||||
img_scale = _base_.img_scale
|
||||
|
||||
model = dict(
|
||||
backbone=dict(
|
||||
deepen_factor=deepen_factor,
|
||||
|
@ -13,3 +23,59 @@ model = dict(
|
|||
widen_factor=widen_factor,
|
||||
),
|
||||
bbox_head=dict(head_module=dict(widen_factor=widen_factor)))
|
||||
|
||||
pre_transform = _base_.pre_transform
|
||||
albu_train_transforms = _base_.albu_train_transforms
|
||||
mosaic_affine_pipeline = [
|
||||
dict(
|
||||
type='Mosaic',
|
||||
img_scale=img_scale,
|
||||
pad_val=114.0,
|
||||
pre_transform=pre_transform),
|
||||
dict(type='YOLOv5CopyPaste', prob=copypaste_prob),
|
||||
dict(
|
||||
type='YOLOv5RandomAffine',
|
||||
max_rotate_degree=0.0,
|
||||
max_shear_degree=0.0,
|
||||
scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale),
|
||||
border=(-img_scale[0] // 2, -img_scale[1] // 2),
|
||||
border_val=(114, 114, 114),
|
||||
min_area_ratio=_base_.min_area_ratio,
|
||||
max_aspect_ratio=_base_.max_aspect_ratio,
|
||||
use_mask_refine=_base_.use_mask2refine),
|
||||
]
|
||||
|
||||
# enable mixup
|
||||
train_pipeline = [
|
||||
*pre_transform,
|
||||
*mosaic_affine_pipeline,
|
||||
dict(
|
||||
type='YOLOv5MixUp',
|
||||
prob=mixup_prob,
|
||||
pre_transform=[*pre_transform, *mosaic_affine_pipeline]),
|
||||
# TODO: support mask transform in albu
|
||||
# Geometric transformations are not supported in albu now.
|
||||
dict(
|
||||
type='mmdet.Albu',
|
||||
transforms=albu_train_transforms,
|
||||
bbox_params=dict(
|
||||
type='BboxParams',
|
||||
format='pascal_voc',
|
||||
label_fields=['gt_bboxes_labels', 'gt_ignore_flags']),
|
||||
keymap={
|
||||
'img': 'image',
|
||||
'gt_bboxes': 'bboxes'
|
||||
}),
|
||||
dict(type='YOLOv5HSVRandomAug'),
|
||||
dict(type='mmdet.RandomFlip', prob=0.5),
|
||||
dict(
|
||||
type='Polygon2Mask',
|
||||
downsample_ratio=_base_.downsample_ratio,
|
||||
mask_overlap=_base_.mask_overlap),
|
||||
dict(
|
||||
type='PackDetInputs',
|
||||
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
|
||||
'flip_direction'))
|
||||
]
|
||||
|
||||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
|
|
|
@ -4,9 +4,10 @@ _base_ = './yolov5_ins_s-v61_syncbn_fast_8xb16-300e_coco_instance.py' # noqa
|
|||
deepen_factor = 0.67
|
||||
widen_factor = 0.75
|
||||
lr_factor = 0.1
|
||||
affine_scale = 0.9
|
||||
loss_cls_weight = 0.3
|
||||
loss_obj_weight = 0.7
|
||||
|
||||
affine_scale = 0.9
|
||||
mixup_prob = 0.1
|
||||
|
||||
# =======================Unmodified in most cases==================
|
||||
|
@ -43,8 +44,8 @@ mosaic_affine_pipeline = [
|
|||
type='YOLOv5RandomAffine',
|
||||
max_rotate_degree=0.0,
|
||||
max_shear_degree=0.0,
|
||||
scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale),
|
||||
border=(-_base_.img_scale[0] // 2, -_base_.img_scale[1] // 2),
|
||||
scaling_ratio_range=(1 - affine_scale, 1 + affine_scale),
|
||||
border=(-img_scale[0] // 2, -img_scale[1] // 2),
|
||||
border_val=(114, 114, 114),
|
||||
min_area_ratio=_base_.min_area_ratio,
|
||||
max_aspect_ratio=_base_.max_aspect_ratio,
|
||||
|
|
|
@ -88,7 +88,7 @@ train_pipeline = [
|
|||
label_fields=['gt_bboxes_labels', 'gt_ignore_flags']),
|
||||
keymap={
|
||||
'img': 'image',
|
||||
'gt_bboxes': 'bboxes',
|
||||
'gt_bboxes': 'bboxes'
|
||||
}),
|
||||
dict(type='YOLOv5HSVRandomAug'),
|
||||
dict(type='mmdet.RandomFlip', prob=0.5),
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
_base_ = './yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance.py' # noqa
|
||||
_base_ = './yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance.py' # noqa
|
||||
|
||||
deepen_factor = 1.33
|
||||
widen_factor = 1.25
|
||||
|
|
|
@ -296,9 +296,9 @@ Models:
|
|||
Metrics:
|
||||
mask AP: 32.1
|
||||
Weights: https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance/yolov5_ins_s-v61_syncbn_fast_non_overlap_8xb16-300e_coco_instance_20230424_104642-6780d34e.pth
|
||||
- Name: yolov5_ins_m-v61_syncbn_fast=_8xb16-300e_coco_instance
|
||||
- Name: yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance
|
||||
In Collection: YOLOv5
|
||||
Config: configs/yolov5/ins_seg/yolov5_ins_m-v61_syncbn_fast=_8xb16-300e_coco_instance.py
|
||||
Config: configs/yolov5/ins_seg/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance.py
|
||||
Metadata:
|
||||
Training Memory (GB): 7.3
|
||||
Epochs: 300
|
||||
|
@ -312,3 +312,35 @@ Models:
|
|||
Metrics:
|
||||
mask AP: 37.3
|
||||
Weights: https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_m-v61_syncbn_fast_8xb16-300e_coco_instance_20230424_111529-ef5ba1a9.pth
|
||||
- Name: yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance
|
||||
In Collection: YOLOv5
|
||||
Config: configs/yolov5/ins_seg/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance.py
|
||||
Metadata:
|
||||
Training Memory (GB): 10.7
|
||||
Epochs: 300
|
||||
Results:
|
||||
- Task: Object Detection
|
||||
Dataset: COCO
|
||||
Metrics:
|
||||
box AP: 48.8
|
||||
- Task: Instance Segmentation
|
||||
Dataset: COCO
|
||||
Metrics:
|
||||
mask AP: 39.9
|
||||
Weights: https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_l-v61_syncbn_fast_8xb16-300e_coco_instance_20230508_104049-daa09f70.pth
|
||||
- Name: yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance
|
||||
In Collection: YOLOv5
|
||||
Config: configs/yolov5/ins_seg/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance.py
|
||||
Metadata:
|
||||
Training Memory (GB): 15.0
|
||||
Epochs: 300
|
||||
Results:
|
||||
- Task: Object Detection
|
||||
Dataset: COCO
|
||||
Metrics:
|
||||
box AP: 50.6
|
||||
- Task: Instance Segmentation
|
||||
Dataset: COCO
|
||||
Metrics:
|
||||
mask AP: 41.4
|
||||
Weights: https://download.openmmlab.com/mmyolo/v0/yolov5/ins_seg/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance/yolov5_ins_x-v61_syncbn_fast_8xb16-300e_coco_instance_20230508_103925-a260c798.pth
|
||||
|
|
Loading…
Reference in New Issue