mirror of https://github.com/open-mmlab/mmyolo.git
parent
82d288f5d4
commit
e966ce4e60
|
@ -1,30 +1,56 @@
|
||||||
_base_ = '../_base_/default_runtime.py'
|
_base_ = '../_base_/default_runtime.py'
|
||||||
|
|
||||||
|
# ========================Frequently modified parameters======================
|
||||||
|
# -----data related-----
|
||||||
data_root = 'data/coco/'
|
data_root = 'data/coco/'
|
||||||
dataset_type = 'YOLOv5CocoDataset'
|
# Path of train annotation file
|
||||||
|
train_ann_file = 'annotations/instances_train2017.json'
|
||||||
img_scale = (640, 640) # width, height
|
train_data_prefix = 'train2017/' # Prefix of train image path
|
||||||
deepen_factor = 1.0
|
# Path of val annotation file
|
||||||
widen_factor = 1.0
|
val_ann_file = 'annotations/instances_val2017.json'
|
||||||
max_epochs = 300
|
val_data_prefix = 'val2017/' # Prefix of val image path
|
||||||
stage2_num_epochs = 20
|
|
||||||
interval = 10
|
|
||||||
num_classes = 80
|
|
||||||
|
|
||||||
|
num_classes = 80 # Number of classes for classification
|
||||||
|
# Batch size of a single GPU during training
|
||||||
train_batch_size_per_gpu = 32
|
train_batch_size_per_gpu = 32
|
||||||
|
# Worker to pre-fetch data for each single GPU during training
|
||||||
train_num_workers = 10
|
train_num_workers = 10
|
||||||
val_batch_size_per_gpu = 32
|
|
||||||
val_num_workers = 10
|
|
||||||
# persistent_workers must be False if num_workers is 0.
|
# persistent_workers must be False if num_workers is 0.
|
||||||
persistent_workers = True
|
persistent_workers = True
|
||||||
strides = [8, 16, 32]
|
|
||||||
|
# -----train val related-----
|
||||||
|
# Base learning rate for optim_wrapper. Corresponding to 8xb16=64 bs
|
||||||
base_lr = 0.004
|
base_lr = 0.004
|
||||||
|
max_epochs = 300 # Maximum training epochs
|
||||||
|
# Change train_pipeline for final 20 epochs (stage 2)
|
||||||
|
num_epochs_stage2 = 20
|
||||||
|
|
||||||
# single-scale training is recommended to
|
model_test_cfg = dict(
|
||||||
# be turned on, which can speed up training.
|
# The config of multi-label for multi-class prediction.
|
||||||
env_cfg = dict(cudnn_benchmark=True)
|
multi_label=True,
|
||||||
|
# The number of boxes before NMS
|
||||||
|
nms_pre=30000,
|
||||||
|
score_thr=0.001, # Threshold to filter out boxes.
|
||||||
|
nms=dict(type='nms', iou_threshold=0.65), # NMS type and threshold
|
||||||
|
max_per_img=300) # Max number of detections of each image
|
||||||
|
|
||||||
# only on Val
|
# ========================Possible modified parameters========================
|
||||||
|
# -----data related-----
|
||||||
|
img_scale = (640, 640) # width, height
|
||||||
|
# ratio range for random resize
|
||||||
|
random_resize_ratio_range = (0.1, 2.0)
|
||||||
|
# Cached images number in mosaic
|
||||||
|
mosaic_max_cached_images = 40
|
||||||
|
# Number of cached images in mixup
|
||||||
|
mixup_max_cached_images = 20
|
||||||
|
# Dataset type, this will be used to define the dataset
|
||||||
|
dataset_type = 'YOLOv5CocoDataset'
|
||||||
|
# Batch size of a single GPU during validation
|
||||||
|
val_batch_size_per_gpu = 32
|
||||||
|
# Worker to pre-fetch data for each single GPU during validation
|
||||||
|
val_num_workers = 10
|
||||||
|
|
||||||
|
# Config of batch shapes. Only on val.
|
||||||
batch_shapes_cfg = dict(
|
batch_shapes_cfg = dict(
|
||||||
type='BatchShapePolicy',
|
type='BatchShapePolicy',
|
||||||
batch_size=val_batch_size_per_gpu,
|
batch_size=val_batch_size_per_gpu,
|
||||||
|
@ -32,6 +58,35 @@ batch_shapes_cfg = dict(
|
||||||
size_divisor=32,
|
size_divisor=32,
|
||||||
extra_pad_ratio=0.5)
|
extra_pad_ratio=0.5)
|
||||||
|
|
||||||
|
# -----model related-----
|
||||||
|
# The scaling factor that controls the depth of the network structure
|
||||||
|
deepen_factor = 1.0
|
||||||
|
# The scaling factor that controls the width of the network structure
|
||||||
|
widen_factor = 1.0
|
||||||
|
# Strides of multi-scale prior box
|
||||||
|
strides = [8, 16, 32]
|
||||||
|
|
||||||
|
norm_cfg = dict(type='BN') # Normalization config
|
||||||
|
|
||||||
|
# -----train val related-----
|
||||||
|
lr_start_factor = 1.0e-5
|
||||||
|
dsl_topk = 13 # Number of bbox selected in each level
|
||||||
|
loss_cls_weight = 1.0
|
||||||
|
loss_bbox_weight = 2.0
|
||||||
|
qfl_beta = 2.0 # beta of QualityFocalLoss
|
||||||
|
weight_decay = 0.05
|
||||||
|
|
||||||
|
# Save model checkpoint and validation intervals
|
||||||
|
save_checkpoint_intervals = 10
|
||||||
|
# validation intervals in stage 2
|
||||||
|
val_interval_stage2 = 1
|
||||||
|
# The maximum checkpoints to keep.
|
||||||
|
max_keep_ckpts = 3
|
||||||
|
# single-scale training is recommended to
|
||||||
|
# be turned on, which can speed up training.
|
||||||
|
env_cfg = dict(cudnn_benchmark=True)
|
||||||
|
|
||||||
|
# ===============================Unmodified in most cases====================
|
||||||
model = dict(
|
model = dict(
|
||||||
type='YOLODetector',
|
type='YOLODetector',
|
||||||
data_preprocessor=dict(
|
data_preprocessor=dict(
|
||||||
|
@ -46,7 +101,7 @@ model = dict(
|
||||||
deepen_factor=deepen_factor,
|
deepen_factor=deepen_factor,
|
||||||
widen_factor=widen_factor,
|
widen_factor=widen_factor,
|
||||||
channel_attention=True,
|
channel_attention=True,
|
||||||
norm_cfg=dict(type='BN'),
|
norm_cfg=norm_cfg,
|
||||||
act_cfg=dict(type='SiLU', inplace=True)),
|
act_cfg=dict(type='SiLU', inplace=True)),
|
||||||
neck=dict(
|
neck=dict(
|
||||||
type='CSPNeXtPAFPN',
|
type='CSPNeXtPAFPN',
|
||||||
|
@ -56,7 +111,7 @@ model = dict(
|
||||||
out_channels=256,
|
out_channels=256,
|
||||||
num_csp_blocks=3,
|
num_csp_blocks=3,
|
||||||
expand_ratio=0.5,
|
expand_ratio=0.5,
|
||||||
norm_cfg=dict(type='BN'),
|
norm_cfg=norm_cfg,
|
||||||
act_cfg=dict(type='SiLU', inplace=True)),
|
act_cfg=dict(type='SiLU', inplace=True)),
|
||||||
bbox_head=dict(
|
bbox_head=dict(
|
||||||
type='RTMDetHead',
|
type='RTMDetHead',
|
||||||
|
@ -66,7 +121,7 @@ model = dict(
|
||||||
in_channels=256,
|
in_channels=256,
|
||||||
stacked_convs=2,
|
stacked_convs=2,
|
||||||
feat_channels=256,
|
feat_channels=256,
|
||||||
norm_cfg=dict(type='BN'),
|
norm_cfg=norm_cfg,
|
||||||
act_cfg=dict(type='SiLU', inplace=True),
|
act_cfg=dict(type='SiLU', inplace=True),
|
||||||
share_conv=True,
|
share_conv=True,
|
||||||
pred_kernel_size=1,
|
pred_kernel_size=1,
|
||||||
|
@ -77,24 +132,19 @@ model = dict(
|
||||||
loss_cls=dict(
|
loss_cls=dict(
|
||||||
type='mmdet.QualityFocalLoss',
|
type='mmdet.QualityFocalLoss',
|
||||||
use_sigmoid=True,
|
use_sigmoid=True,
|
||||||
beta=2.0,
|
beta=qfl_beta,
|
||||||
loss_weight=1.0),
|
loss_weight=loss_cls_weight),
|
||||||
loss_bbox=dict(type='mmdet.GIoULoss', loss_weight=2.0)),
|
loss_bbox=dict(type='mmdet.GIoULoss', loss_weight=loss_bbox_weight)),
|
||||||
train_cfg=dict(
|
train_cfg=dict(
|
||||||
assigner=dict(
|
assigner=dict(
|
||||||
type='BatchDynamicSoftLabelAssigner',
|
type='BatchDynamicSoftLabelAssigner',
|
||||||
num_classes=num_classes,
|
num_classes=num_classes,
|
||||||
topk=13,
|
topk=dsl_topk,
|
||||||
iou_calculator=dict(type='mmdet.BboxOverlaps2D')),
|
iou_calculator=dict(type='mmdet.BboxOverlaps2D')),
|
||||||
allowed_border=-1,
|
allowed_border=-1,
|
||||||
pos_weight=-1,
|
pos_weight=-1,
|
||||||
debug=False),
|
debug=False),
|
||||||
test_cfg=dict(
|
test_cfg=model_test_cfg,
|
||||||
multi_label=True,
|
|
||||||
nms_pre=30000,
|
|
||||||
score_thr=0.001,
|
|
||||||
nms=dict(type='nms', iou_threshold=0.65),
|
|
||||||
max_per_img=300),
|
|
||||||
)
|
)
|
||||||
|
|
||||||
train_pipeline = [
|
train_pipeline = [
|
||||||
|
@ -104,20 +154,23 @@ train_pipeline = [
|
||||||
type='Mosaic',
|
type='Mosaic',
|
||||||
img_scale=img_scale,
|
img_scale=img_scale,
|
||||||
use_cached=True,
|
use_cached=True,
|
||||||
max_cached_images=40,
|
max_cached_images=mosaic_max_cached_images,
|
||||||
pad_val=114.0),
|
pad_val=114.0),
|
||||||
dict(
|
dict(
|
||||||
type='mmdet.RandomResize',
|
type='mmdet.RandomResize',
|
||||||
# img_scale is (width, height)
|
# img_scale is (width, height)
|
||||||
scale=(img_scale[0] * 2, img_scale[1] * 2),
|
scale=(img_scale[0] * 2, img_scale[1] * 2),
|
||||||
ratio_range=(0.1, 2.0),
|
ratio_range=random_resize_ratio_range,
|
||||||
resize_type='mmdet.Resize',
|
resize_type='mmdet.Resize',
|
||||||
keep_ratio=True),
|
keep_ratio=True),
|
||||||
dict(type='mmdet.RandomCrop', crop_size=img_scale),
|
dict(type='mmdet.RandomCrop', crop_size=img_scale),
|
||||||
dict(type='mmdet.YOLOXHSVRandomAug'),
|
dict(type='mmdet.YOLOXHSVRandomAug'),
|
||||||
dict(type='mmdet.RandomFlip', prob=0.5),
|
dict(type='mmdet.RandomFlip', prob=0.5),
|
||||||
dict(type='mmdet.Pad', size=img_scale, pad_val=dict(img=(114, 114, 114))),
|
dict(type='mmdet.Pad', size=img_scale, pad_val=dict(img=(114, 114, 114))),
|
||||||
dict(type='YOLOv5MixUp', use_cached=True, max_cached_images=20),
|
dict(
|
||||||
|
type='YOLOv5MixUp',
|
||||||
|
use_cached=True,
|
||||||
|
max_cached_images=mixup_max_cached_images),
|
||||||
dict(type='mmdet.PackDetInputs')
|
dict(type='mmdet.PackDetInputs')
|
||||||
]
|
]
|
||||||
|
|
||||||
|
@ -127,7 +180,7 @@ train_pipeline_stage2 = [
|
||||||
dict(
|
dict(
|
||||||
type='mmdet.RandomResize',
|
type='mmdet.RandomResize',
|
||||||
scale=img_scale,
|
scale=img_scale,
|
||||||
ratio_range=(0.1, 2.0),
|
ratio_range=random_resize_ratio_range,
|
||||||
resize_type='mmdet.Resize',
|
resize_type='mmdet.Resize',
|
||||||
keep_ratio=True),
|
keep_ratio=True),
|
||||||
dict(type='mmdet.RandomCrop', crop_size=img_scale),
|
dict(type='mmdet.RandomCrop', crop_size=img_scale),
|
||||||
|
@ -162,8 +215,8 @@ train_dataloader = dict(
|
||||||
dataset=dict(
|
dataset=dict(
|
||||||
type=dataset_type,
|
type=dataset_type,
|
||||||
data_root=data_root,
|
data_root=data_root,
|
||||||
ann_file='annotations/instances_train2017.json',
|
ann_file=train_ann_file,
|
||||||
data_prefix=dict(img='train2017/'),
|
data_prefix=dict(img=train_data_prefix),
|
||||||
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
||||||
pipeline=train_pipeline))
|
pipeline=train_pipeline))
|
||||||
|
|
||||||
|
@ -177,8 +230,8 @@ val_dataloader = dict(
|
||||||
dataset=dict(
|
dataset=dict(
|
||||||
type=dataset_type,
|
type=dataset_type,
|
||||||
data_root=data_root,
|
data_root=data_root,
|
||||||
ann_file='annotations/instances_val2017.json',
|
ann_file=val_ann_file,
|
||||||
data_prefix=dict(img='val2017/'),
|
data_prefix=dict(img=val_data_prefix),
|
||||||
test_mode=True,
|
test_mode=True,
|
||||||
batch_shapes_cfg=batch_shapes_cfg,
|
batch_shapes_cfg=batch_shapes_cfg,
|
||||||
pipeline=test_pipeline))
|
pipeline=test_pipeline))
|
||||||
|
@ -189,14 +242,14 @@ test_dataloader = val_dataloader
|
||||||
val_evaluator = dict(
|
val_evaluator = dict(
|
||||||
type='mmdet.CocoMetric',
|
type='mmdet.CocoMetric',
|
||||||
proposal_nums=(100, 1, 10),
|
proposal_nums=(100, 1, 10),
|
||||||
ann_file=data_root + 'annotations/instances_val2017.json',
|
ann_file=data_root + val_ann_file,
|
||||||
metric='bbox')
|
metric='bbox')
|
||||||
test_evaluator = val_evaluator
|
test_evaluator = val_evaluator
|
||||||
|
|
||||||
# optimizer
|
# optimizer
|
||||||
optim_wrapper = dict(
|
optim_wrapper = dict(
|
||||||
type='OptimWrapper',
|
type='OptimWrapper',
|
||||||
optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.05),
|
optimizer=dict(type='AdamW', lr=base_lr, weight_decay=weight_decay),
|
||||||
paramwise_cfg=dict(
|
paramwise_cfg=dict(
|
||||||
norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))
|
norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))
|
||||||
|
|
||||||
|
@ -204,7 +257,7 @@ optim_wrapper = dict(
|
||||||
param_scheduler = [
|
param_scheduler = [
|
||||||
dict(
|
dict(
|
||||||
type='LinearLR',
|
type='LinearLR',
|
||||||
start_factor=1.0e-5,
|
start_factor=lr_start_factor,
|
||||||
by_epoch=False,
|
by_epoch=False,
|
||||||
begin=0,
|
begin=0,
|
||||||
end=1000),
|
end=1000),
|
||||||
|
@ -223,8 +276,8 @@ param_scheduler = [
|
||||||
default_hooks = dict(
|
default_hooks = dict(
|
||||||
checkpoint=dict(
|
checkpoint=dict(
|
||||||
type='CheckpointHook',
|
type='CheckpointHook',
|
||||||
interval=interval,
|
interval=save_checkpoint_intervals,
|
||||||
max_keep_ckpts=3 # only keep latest 3 checkpoints
|
max_keep_ckpts=max_keep_ckpts # only keep latest 3 checkpoints
|
||||||
))
|
))
|
||||||
|
|
||||||
custom_hooks = [
|
custom_hooks = [
|
||||||
|
@ -237,15 +290,15 @@ custom_hooks = [
|
||||||
priority=49),
|
priority=49),
|
||||||
dict(
|
dict(
|
||||||
type='mmdet.PipelineSwitchHook',
|
type='mmdet.PipelineSwitchHook',
|
||||||
switch_epoch=max_epochs - stage2_num_epochs,
|
switch_epoch=max_epochs - num_epochs_stage2,
|
||||||
switch_pipeline=train_pipeline_stage2)
|
switch_pipeline=train_pipeline_stage2)
|
||||||
]
|
]
|
||||||
|
|
||||||
train_cfg = dict(
|
train_cfg = dict(
|
||||||
type='EpochBasedTrainLoop',
|
type='EpochBasedTrainLoop',
|
||||||
max_epochs=max_epochs,
|
max_epochs=max_epochs,
|
||||||
val_interval=interval,
|
val_interval=save_checkpoint_intervals,
|
||||||
dynamic_intervals=[(max_epochs - stage2_num_epochs, 1)])
|
dynamic_intervals=[(max_epochs - num_epochs_stage2, val_interval_stage2)])
|
||||||
|
|
||||||
val_cfg = dict(type='ValLoop')
|
val_cfg = dict(type='ValLoop')
|
||||||
test_cfg = dict(type='TestLoop')
|
test_cfg = dict(type='TestLoop')
|
||||||
|
|
|
@ -1,8 +1,10 @@
|
||||||
_base_ = './rtmdet_l_syncbn_fast_8xb32-300e_coco.py'
|
_base_ = './rtmdet_l_syncbn_fast_8xb32-300e_coco.py'
|
||||||
|
|
||||||
|
# ========================modified parameters======================
|
||||||
deepen_factor = 0.67
|
deepen_factor = 0.67
|
||||||
widen_factor = 0.75
|
widen_factor = 0.75
|
||||||
|
|
||||||
|
# =======================Unmodified in most cases==================
|
||||||
model = dict(
|
model = dict(
|
||||||
backbone=dict(deepen_factor=deepen_factor, widen_factor=widen_factor),
|
backbone=dict(deepen_factor=deepen_factor, widen_factor=widen_factor),
|
||||||
neck=dict(deepen_factor=deepen_factor, widen_factor=widen_factor),
|
neck=dict(deepen_factor=deepen_factor, widen_factor=widen_factor),
|
||||||
|
|
|
@ -1,10 +1,19 @@
|
||||||
_base_ = './rtmdet_l_syncbn_fast_8xb32-300e_coco.py'
|
_base_ = './rtmdet_l_syncbn_fast_8xb32-300e_coco.py'
|
||||||
checkpoint = 'https://download.openmmlab.com/mmdetection/v3.0/rtmdet/cspnext_rsb_pretrain/cspnext-s_imagenet_600e.pth' # noqa
|
checkpoint = 'https://download.openmmlab.com/mmdetection/v3.0/rtmdet/cspnext_rsb_pretrain/cspnext-s_imagenet_600e.pth' # noqa
|
||||||
|
|
||||||
|
# ========================modified parameters======================
|
||||||
deepen_factor = 0.33
|
deepen_factor = 0.33
|
||||||
widen_factor = 0.5
|
widen_factor = 0.5
|
||||||
img_scale = _base_.img_scale
|
img_scale = _base_.img_scale
|
||||||
|
|
||||||
|
# ratio range for random resize
|
||||||
|
random_resize_ratio_range = (0.5, 2.0)
|
||||||
|
# Number of cached images in mosaic
|
||||||
|
mosaic_max_cached_images = 40
|
||||||
|
# Number of cached images in mixup
|
||||||
|
mixup_max_cached_images = 20
|
||||||
|
|
||||||
|
# =======================Unmodified in most cases==================
|
||||||
model = dict(
|
model = dict(
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
deepen_factor=deepen_factor,
|
deepen_factor=deepen_factor,
|
||||||
|
@ -30,20 +39,23 @@ train_pipeline = [
|
||||||
type='Mosaic',
|
type='Mosaic',
|
||||||
img_scale=img_scale,
|
img_scale=img_scale,
|
||||||
use_cached=True,
|
use_cached=True,
|
||||||
max_cached_images=40,
|
max_cached_images=mosaic_max_cached_images,
|
||||||
pad_val=114.0),
|
pad_val=114.0),
|
||||||
dict(
|
dict(
|
||||||
type='mmdet.RandomResize',
|
type='mmdet.RandomResize',
|
||||||
# img_scale is (width, height)
|
# img_scale is (width, height)
|
||||||
scale=(img_scale[0] * 2, img_scale[1] * 2),
|
scale=(img_scale[0] * 2, img_scale[1] * 2),
|
||||||
ratio_range=(0.5, 2.0), # note
|
ratio_range=random_resize_ratio_range, # note
|
||||||
resize_type='mmdet.Resize',
|
resize_type='mmdet.Resize',
|
||||||
keep_ratio=True),
|
keep_ratio=True),
|
||||||
dict(type='mmdet.RandomCrop', crop_size=img_scale),
|
dict(type='mmdet.RandomCrop', crop_size=img_scale),
|
||||||
dict(type='mmdet.YOLOXHSVRandomAug'),
|
dict(type='mmdet.YOLOXHSVRandomAug'),
|
||||||
dict(type='mmdet.RandomFlip', prob=0.5),
|
dict(type='mmdet.RandomFlip', prob=0.5),
|
||||||
dict(type='mmdet.Pad', size=img_scale, pad_val=dict(img=(114, 114, 114))),
|
dict(type='mmdet.Pad', size=img_scale, pad_val=dict(img=(114, 114, 114))),
|
||||||
dict(type='YOLOv5MixUp', use_cached=True, max_cached_images=20),
|
dict(
|
||||||
|
type='YOLOv5MixUp',
|
||||||
|
use_cached=True,
|
||||||
|
max_cached_images=mixup_max_cached_images),
|
||||||
dict(type='mmdet.PackDetInputs')
|
dict(type='mmdet.PackDetInputs')
|
||||||
]
|
]
|
||||||
|
|
||||||
|
@ -53,7 +65,7 @@ train_pipeline_stage2 = [
|
||||||
dict(
|
dict(
|
||||||
type='mmdet.RandomResize',
|
type='mmdet.RandomResize',
|
||||||
scale=img_scale,
|
scale=img_scale,
|
||||||
ratio_range=(0.5, 2.0), # note
|
ratio_range=random_resize_ratio_range, # note
|
||||||
resize_type='mmdet.Resize',
|
resize_type='mmdet.Resize',
|
||||||
keep_ratio=True),
|
keep_ratio=True),
|
||||||
dict(type='mmdet.RandomCrop', crop_size=img_scale),
|
dict(type='mmdet.RandomCrop', crop_size=img_scale),
|
||||||
|
@ -75,6 +87,6 @@ custom_hooks = [
|
||||||
priority=49),
|
priority=49),
|
||||||
dict(
|
dict(
|
||||||
type='mmdet.PipelineSwitchHook',
|
type='mmdet.PipelineSwitchHook',
|
||||||
switch_epoch=_base_.max_epochs - _base_.stage2_num_epochs,
|
switch_epoch=_base_.max_epochs - _base_.num_epochs_stage2,
|
||||||
switch_pipeline=train_pipeline_stage2)
|
switch_pipeline=train_pipeline_stage2)
|
||||||
]
|
]
|
||||||
|
|
|
@ -1,11 +1,19 @@
|
||||||
_base_ = './rtmdet_s_syncbn_fast_8xb32-300e_coco.py'
|
_base_ = './rtmdet_s_syncbn_fast_8xb32-300e_coco.py'
|
||||||
|
|
||||||
checkpoint = 'https://download.openmmlab.com/mmdetection/v3.0/rtmdet/cspnext_rsb_pretrain/cspnext-tiny_imagenet_600e.pth' # noqa
|
checkpoint = 'https://download.openmmlab.com/mmdetection/v3.0/rtmdet/cspnext_rsb_pretrain/cspnext-tiny_imagenet_600e.pth' # noqa
|
||||||
|
|
||||||
|
# ========================modified parameters======================
|
||||||
deepen_factor = 0.167
|
deepen_factor = 0.167
|
||||||
widen_factor = 0.375
|
widen_factor = 0.375
|
||||||
img_scale = _base_.img_scale
|
img_scale = _base_.img_scale
|
||||||
|
|
||||||
|
# ratio range for random resize
|
||||||
|
random_resize_ratio_range = (0.5, 2.0)
|
||||||
|
# Number of cached images in mosaic
|
||||||
|
mosaic_max_cached_images = 20
|
||||||
|
# Number of cached images in mixup
|
||||||
|
mixup_max_cached_images = 10
|
||||||
|
|
||||||
|
# =======================Unmodified in most cases==================
|
||||||
model = dict(
|
model = dict(
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
deepen_factor=deepen_factor,
|
deepen_factor=deepen_factor,
|
||||||
|
@ -24,14 +32,14 @@ train_pipeline = [
|
||||||
type='Mosaic',
|
type='Mosaic',
|
||||||
img_scale=img_scale,
|
img_scale=img_scale,
|
||||||
use_cached=True,
|
use_cached=True,
|
||||||
max_cached_images=20, # note
|
max_cached_images=mosaic_max_cached_images, # note
|
||||||
random_pop=False, # note
|
random_pop=False, # note
|
||||||
pad_val=114.0),
|
pad_val=114.0),
|
||||||
dict(
|
dict(
|
||||||
type='mmdet.RandomResize',
|
type='mmdet.RandomResize',
|
||||||
# img_scale is (width, height)
|
# img_scale is (width, height)
|
||||||
scale=(img_scale[0] * 2, img_scale[1] * 2),
|
scale=(img_scale[0] * 2, img_scale[1] * 2),
|
||||||
ratio_range=(0.5, 2.0),
|
ratio_range=random_resize_ratio_range,
|
||||||
resize_type='mmdet.Resize',
|
resize_type='mmdet.Resize',
|
||||||
keep_ratio=True),
|
keep_ratio=True),
|
||||||
dict(type='mmdet.RandomCrop', crop_size=img_scale),
|
dict(type='mmdet.RandomCrop', crop_size=img_scale),
|
||||||
|
@ -42,7 +50,7 @@ train_pipeline = [
|
||||||
type='YOLOv5MixUp',
|
type='YOLOv5MixUp',
|
||||||
use_cached=True,
|
use_cached=True,
|
||||||
random_pop=False,
|
random_pop=False,
|
||||||
max_cached_images=10,
|
max_cached_images=mixup_max_cached_images,
|
||||||
prob=0.5),
|
prob=0.5),
|
||||||
dict(type='mmdet.PackDetInputs')
|
dict(type='mmdet.PackDetInputs')
|
||||||
]
|
]
|
||||||
|
|
|
@ -1,8 +1,10 @@
|
||||||
_base_ = './rtmdet_l_syncbn_fast_8xb32-300e_coco.py'
|
_base_ = './rtmdet_l_syncbn_fast_8xb32-300e_coco.py'
|
||||||
|
|
||||||
|
# ========================modified parameters======================
|
||||||
deepen_factor = 1.33
|
deepen_factor = 1.33
|
||||||
widen_factor = 1.25
|
widen_factor = 1.25
|
||||||
|
|
||||||
|
# =======================Unmodified in most cases==================
|
||||||
model = dict(
|
model = dict(
|
||||||
backbone=dict(deepen_factor=deepen_factor, widen_factor=widen_factor),
|
backbone=dict(deepen_factor=deepen_factor, widen_factor=widen_factor),
|
||||||
neck=dict(deepen_factor=deepen_factor, widen_factor=widen_factor),
|
neck=dict(deepen_factor=deepen_factor, widen_factor=widen_factor),
|
||||||
|
|
|
@ -27,7 +27,7 @@ anchors = [
|
||||||
]
|
]
|
||||||
|
|
||||||
# -----train val related-----
|
# -----train val related-----
|
||||||
# Base learning rate for optim_wrapper. Corresponding to 8xb16=64 bs
|
# Base learning rate for optim_wrapper. Corresponding to 8xb16=128 bs
|
||||||
base_lr = 0.01
|
base_lr = 0.01
|
||||||
max_epochs = 300 # Maximum training epochs
|
max_epochs = 300 # Maximum training epochs
|
||||||
|
|
||||||
|
@ -77,12 +77,12 @@ loss_cls_weight = 0.5
|
||||||
loss_bbox_weight = 0.05
|
loss_bbox_weight = 0.05
|
||||||
loss_obj_weight = 1.0
|
loss_obj_weight = 1.0
|
||||||
prior_match_thr = 4. # Priori box matching threshold
|
prior_match_thr = 4. # Priori box matching threshold
|
||||||
obj_level_weights = [4., 1.,
|
# The obj loss weights of the three output layers
|
||||||
0.4] # The obj loss weights of the three output layers
|
obj_level_weights = [4., 1., 0.4]
|
||||||
lr_factor = 0.01 # Learning rate scaling factor
|
lr_factor = 0.01 # Learning rate scaling factor
|
||||||
weight_decay = 0.0005
|
weight_decay = 0.0005
|
||||||
# Save model checkpoint and validation intervals
|
# Save model checkpoint and validation intervals
|
||||||
save_epoch_intervals = 10
|
save_checkpoint_intervals = 10
|
||||||
# The maximum checkpoints to keep.
|
# The maximum checkpoints to keep.
|
||||||
max_keep_ckpts = 3
|
max_keep_ckpts = 3
|
||||||
# Single-scale training is recommended to
|
# Single-scale training is recommended to
|
||||||
|
@ -263,7 +263,7 @@ default_hooks = dict(
|
||||||
max_epochs=max_epochs),
|
max_epochs=max_epochs),
|
||||||
checkpoint=dict(
|
checkpoint=dict(
|
||||||
type='CheckpointHook',
|
type='CheckpointHook',
|
||||||
interval=save_epoch_intervals,
|
interval=save_checkpoint_intervals,
|
||||||
save_best='auto',
|
save_best='auto',
|
||||||
max_keep_ckpts=max_keep_ckpts))
|
max_keep_ckpts=max_keep_ckpts))
|
||||||
|
|
||||||
|
@ -287,6 +287,6 @@ test_evaluator = val_evaluator
|
||||||
train_cfg = dict(
|
train_cfg = dict(
|
||||||
type='EpochBasedTrainLoop',
|
type='EpochBasedTrainLoop',
|
||||||
max_epochs=max_epochs,
|
max_epochs=max_epochs,
|
||||||
val_interval=save_epoch_intervals)
|
val_interval=save_checkpoint_intervals)
|
||||||
val_cfg = dict(type='ValLoop')
|
val_cfg = dict(type='ValLoop')
|
||||||
test_cfg = dict(type='TestLoop')
|
test_cfg = dict(type='TestLoop')
|
||||||
|
|
Loading…
Reference in New Issue