mirror of https://github.com/open-mmlab/mmyolo.git
parent
82d288f5d4
commit
e966ce4e60
|
@ -1,30 +1,56 @@
|
|||
_base_ = '../_base_/default_runtime.py'
|
||||
|
||||
# ========================Frequently modified parameters======================
|
||||
# -----data related-----
|
||||
data_root = 'data/coco/'
|
||||
dataset_type = 'YOLOv5CocoDataset'
|
||||
|
||||
img_scale = (640, 640) # width, height
|
||||
deepen_factor = 1.0
|
||||
widen_factor = 1.0
|
||||
max_epochs = 300
|
||||
stage2_num_epochs = 20
|
||||
interval = 10
|
||||
num_classes = 80
|
||||
# Path of train annotation file
|
||||
train_ann_file = 'annotations/instances_train2017.json'
|
||||
train_data_prefix = 'train2017/' # Prefix of train image path
|
||||
# Path of val annotation file
|
||||
val_ann_file = 'annotations/instances_val2017.json'
|
||||
val_data_prefix = 'val2017/' # Prefix of val image path
|
||||
|
||||
num_classes = 80 # Number of classes for classification
|
||||
# Batch size of a single GPU during training
|
||||
train_batch_size_per_gpu = 32
|
||||
# Worker to pre-fetch data for each single GPU during training
|
||||
train_num_workers = 10
|
||||
val_batch_size_per_gpu = 32
|
||||
val_num_workers = 10
|
||||
# persistent_workers must be False if num_workers is 0.
|
||||
persistent_workers = True
|
||||
strides = [8, 16, 32]
|
||||
|
||||
# -----train val related-----
|
||||
# Base learning rate for optim_wrapper. Corresponding to 8xb16=64 bs
|
||||
base_lr = 0.004
|
||||
max_epochs = 300 # Maximum training epochs
|
||||
# Change train_pipeline for final 20 epochs (stage 2)
|
||||
num_epochs_stage2 = 20
|
||||
|
||||
# single-scale training is recommended to
|
||||
# be turned on, which can speed up training.
|
||||
env_cfg = dict(cudnn_benchmark=True)
|
||||
model_test_cfg = dict(
|
||||
# The config of multi-label for multi-class prediction.
|
||||
multi_label=True,
|
||||
# The number of boxes before NMS
|
||||
nms_pre=30000,
|
||||
score_thr=0.001, # Threshold to filter out boxes.
|
||||
nms=dict(type='nms', iou_threshold=0.65), # NMS type and threshold
|
||||
max_per_img=300) # Max number of detections of each image
|
||||
|
||||
# only on Val
|
||||
# ========================Possible modified parameters========================
|
||||
# -----data related-----
|
||||
img_scale = (640, 640) # width, height
|
||||
# ratio range for random resize
|
||||
random_resize_ratio_range = (0.1, 2.0)
|
||||
# Cached images number in mosaic
|
||||
mosaic_max_cached_images = 40
|
||||
# Number of cached images in mixup
|
||||
mixup_max_cached_images = 20
|
||||
# Dataset type, this will be used to define the dataset
|
||||
dataset_type = 'YOLOv5CocoDataset'
|
||||
# Batch size of a single GPU during validation
|
||||
val_batch_size_per_gpu = 32
|
||||
# Worker to pre-fetch data for each single GPU during validation
|
||||
val_num_workers = 10
|
||||
|
||||
# Config of batch shapes. Only on val.
|
||||
batch_shapes_cfg = dict(
|
||||
type='BatchShapePolicy',
|
||||
batch_size=val_batch_size_per_gpu,
|
||||
|
@ -32,6 +58,35 @@ batch_shapes_cfg = dict(
|
|||
size_divisor=32,
|
||||
extra_pad_ratio=0.5)
|
||||
|
||||
# -----model related-----
|
||||
# The scaling factor that controls the depth of the network structure
|
||||
deepen_factor = 1.0
|
||||
# The scaling factor that controls the width of the network structure
|
||||
widen_factor = 1.0
|
||||
# Strides of multi-scale prior box
|
||||
strides = [8, 16, 32]
|
||||
|
||||
norm_cfg = dict(type='BN') # Normalization config
|
||||
|
||||
# -----train val related-----
|
||||
lr_start_factor = 1.0e-5
|
||||
dsl_topk = 13 # Number of bbox selected in each level
|
||||
loss_cls_weight = 1.0
|
||||
loss_bbox_weight = 2.0
|
||||
qfl_beta = 2.0 # beta of QualityFocalLoss
|
||||
weight_decay = 0.05
|
||||
|
||||
# Save model checkpoint and validation intervals
|
||||
save_checkpoint_intervals = 10
|
||||
# validation intervals in stage 2
|
||||
val_interval_stage2 = 1
|
||||
# The maximum checkpoints to keep.
|
||||
max_keep_ckpts = 3
|
||||
# single-scale training is recommended to
|
||||
# be turned on, which can speed up training.
|
||||
env_cfg = dict(cudnn_benchmark=True)
|
||||
|
||||
# ===============================Unmodified in most cases====================
|
||||
model = dict(
|
||||
type='YOLODetector',
|
||||
data_preprocessor=dict(
|
||||
|
@ -46,7 +101,7 @@ model = dict(
|
|||
deepen_factor=deepen_factor,
|
||||
widen_factor=widen_factor,
|
||||
channel_attention=True,
|
||||
norm_cfg=dict(type='BN'),
|
||||
norm_cfg=norm_cfg,
|
||||
act_cfg=dict(type='SiLU', inplace=True)),
|
||||
neck=dict(
|
||||
type='CSPNeXtPAFPN',
|
||||
|
@ -56,7 +111,7 @@ model = dict(
|
|||
out_channels=256,
|
||||
num_csp_blocks=3,
|
||||
expand_ratio=0.5,
|
||||
norm_cfg=dict(type='BN'),
|
||||
norm_cfg=norm_cfg,
|
||||
act_cfg=dict(type='SiLU', inplace=True)),
|
||||
bbox_head=dict(
|
||||
type='RTMDetHead',
|
||||
|
@ -66,7 +121,7 @@ model = dict(
|
|||
in_channels=256,
|
||||
stacked_convs=2,
|
||||
feat_channels=256,
|
||||
norm_cfg=dict(type='BN'),
|
||||
norm_cfg=norm_cfg,
|
||||
act_cfg=dict(type='SiLU', inplace=True),
|
||||
share_conv=True,
|
||||
pred_kernel_size=1,
|
||||
|
@ -77,24 +132,19 @@ model = dict(
|
|||
loss_cls=dict(
|
||||
type='mmdet.QualityFocalLoss',
|
||||
use_sigmoid=True,
|
||||
beta=2.0,
|
||||
loss_weight=1.0),
|
||||
loss_bbox=dict(type='mmdet.GIoULoss', loss_weight=2.0)),
|
||||
beta=qfl_beta,
|
||||
loss_weight=loss_cls_weight),
|
||||
loss_bbox=dict(type='mmdet.GIoULoss', loss_weight=loss_bbox_weight)),
|
||||
train_cfg=dict(
|
||||
assigner=dict(
|
||||
type='BatchDynamicSoftLabelAssigner',
|
||||
num_classes=num_classes,
|
||||
topk=13,
|
||||
topk=dsl_topk,
|
||||
iou_calculator=dict(type='mmdet.BboxOverlaps2D')),
|
||||
allowed_border=-1,
|
||||
pos_weight=-1,
|
||||
debug=False),
|
||||
test_cfg=dict(
|
||||
multi_label=True,
|
||||
nms_pre=30000,
|
||||
score_thr=0.001,
|
||||
nms=dict(type='nms', iou_threshold=0.65),
|
||||
max_per_img=300),
|
||||
test_cfg=model_test_cfg,
|
||||
)
|
||||
|
||||
train_pipeline = [
|
||||
|
@ -104,20 +154,23 @@ train_pipeline = [
|
|||
type='Mosaic',
|
||||
img_scale=img_scale,
|
||||
use_cached=True,
|
||||
max_cached_images=40,
|
||||
max_cached_images=mosaic_max_cached_images,
|
||||
pad_val=114.0),
|
||||
dict(
|
||||
type='mmdet.RandomResize',
|
||||
# img_scale is (width, height)
|
||||
scale=(img_scale[0] * 2, img_scale[1] * 2),
|
||||
ratio_range=(0.1, 2.0),
|
||||
ratio_range=random_resize_ratio_range,
|
||||
resize_type='mmdet.Resize',
|
||||
keep_ratio=True),
|
||||
dict(type='mmdet.RandomCrop', crop_size=img_scale),
|
||||
dict(type='mmdet.YOLOXHSVRandomAug'),
|
||||
dict(type='mmdet.RandomFlip', prob=0.5),
|
||||
dict(type='mmdet.Pad', size=img_scale, pad_val=dict(img=(114, 114, 114))),
|
||||
dict(type='YOLOv5MixUp', use_cached=True, max_cached_images=20),
|
||||
dict(
|
||||
type='YOLOv5MixUp',
|
||||
use_cached=True,
|
||||
max_cached_images=mixup_max_cached_images),
|
||||
dict(type='mmdet.PackDetInputs')
|
||||
]
|
||||
|
||||
|
@ -127,7 +180,7 @@ train_pipeline_stage2 = [
|
|||
dict(
|
||||
type='mmdet.RandomResize',
|
||||
scale=img_scale,
|
||||
ratio_range=(0.1, 2.0),
|
||||
ratio_range=random_resize_ratio_range,
|
||||
resize_type='mmdet.Resize',
|
||||
keep_ratio=True),
|
||||
dict(type='mmdet.RandomCrop', crop_size=img_scale),
|
||||
|
@ -162,8 +215,8 @@ train_dataloader = dict(
|
|||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='annotations/instances_train2017.json',
|
||||
data_prefix=dict(img='train2017/'),
|
||||
ann_file=train_ann_file,
|
||||
data_prefix=dict(img=train_data_prefix),
|
||||
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
||||
pipeline=train_pipeline))
|
||||
|
||||
|
@ -177,8 +230,8 @@ val_dataloader = dict(
|
|||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='annotations/instances_val2017.json',
|
||||
data_prefix=dict(img='val2017/'),
|
||||
ann_file=val_ann_file,
|
||||
data_prefix=dict(img=val_data_prefix),
|
||||
test_mode=True,
|
||||
batch_shapes_cfg=batch_shapes_cfg,
|
||||
pipeline=test_pipeline))
|
||||
|
@ -189,14 +242,14 @@ test_dataloader = val_dataloader
|
|||
val_evaluator = dict(
|
||||
type='mmdet.CocoMetric',
|
||||
proposal_nums=(100, 1, 10),
|
||||
ann_file=data_root + 'annotations/instances_val2017.json',
|
||||
ann_file=data_root + val_ann_file,
|
||||
metric='bbox')
|
||||
test_evaluator = val_evaluator
|
||||
|
||||
# optimizer
|
||||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.05),
|
||||
optimizer=dict(type='AdamW', lr=base_lr, weight_decay=weight_decay),
|
||||
paramwise_cfg=dict(
|
||||
norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))
|
||||
|
||||
|
@ -204,7 +257,7 @@ optim_wrapper = dict(
|
|||
param_scheduler = [
|
||||
dict(
|
||||
type='LinearLR',
|
||||
start_factor=1.0e-5,
|
||||
start_factor=lr_start_factor,
|
||||
by_epoch=False,
|
||||
begin=0,
|
||||
end=1000),
|
||||
|
@ -223,8 +276,8 @@ param_scheduler = [
|
|||
default_hooks = dict(
|
||||
checkpoint=dict(
|
||||
type='CheckpointHook',
|
||||
interval=interval,
|
||||
max_keep_ckpts=3 # only keep latest 3 checkpoints
|
||||
interval=save_checkpoint_intervals,
|
||||
max_keep_ckpts=max_keep_ckpts # only keep latest 3 checkpoints
|
||||
))
|
||||
|
||||
custom_hooks = [
|
||||
|
@ -237,15 +290,15 @@ custom_hooks = [
|
|||
priority=49),
|
||||
dict(
|
||||
type='mmdet.PipelineSwitchHook',
|
||||
switch_epoch=max_epochs - stage2_num_epochs,
|
||||
switch_epoch=max_epochs - num_epochs_stage2,
|
||||
switch_pipeline=train_pipeline_stage2)
|
||||
]
|
||||
|
||||
train_cfg = dict(
|
||||
type='EpochBasedTrainLoop',
|
||||
max_epochs=max_epochs,
|
||||
val_interval=interval,
|
||||
dynamic_intervals=[(max_epochs - stage2_num_epochs, 1)])
|
||||
val_interval=save_checkpoint_intervals,
|
||||
dynamic_intervals=[(max_epochs - num_epochs_stage2, val_interval_stage2)])
|
||||
|
||||
val_cfg = dict(type='ValLoop')
|
||||
test_cfg = dict(type='TestLoop')
|
||||
|
|
|
@ -1,8 +1,10 @@
|
|||
_base_ = './rtmdet_l_syncbn_fast_8xb32-300e_coco.py'
|
||||
|
||||
# ========================modified parameters======================
|
||||
deepen_factor = 0.67
|
||||
widen_factor = 0.75
|
||||
|
||||
# =======================Unmodified in most cases==================
|
||||
model = dict(
|
||||
backbone=dict(deepen_factor=deepen_factor, widen_factor=widen_factor),
|
||||
neck=dict(deepen_factor=deepen_factor, widen_factor=widen_factor),
|
||||
|
|
|
@ -1,10 +1,19 @@
|
|||
_base_ = './rtmdet_l_syncbn_fast_8xb32-300e_coco.py'
|
||||
checkpoint = 'https://download.openmmlab.com/mmdetection/v3.0/rtmdet/cspnext_rsb_pretrain/cspnext-s_imagenet_600e.pth' # noqa
|
||||
|
||||
# ========================modified parameters======================
|
||||
deepen_factor = 0.33
|
||||
widen_factor = 0.5
|
||||
img_scale = _base_.img_scale
|
||||
|
||||
# ratio range for random resize
|
||||
random_resize_ratio_range = (0.5, 2.0)
|
||||
# Number of cached images in mosaic
|
||||
mosaic_max_cached_images = 40
|
||||
# Number of cached images in mixup
|
||||
mixup_max_cached_images = 20
|
||||
|
||||
# =======================Unmodified in most cases==================
|
||||
model = dict(
|
||||
backbone=dict(
|
||||
deepen_factor=deepen_factor,
|
||||
|
@ -30,20 +39,23 @@ train_pipeline = [
|
|||
type='Mosaic',
|
||||
img_scale=img_scale,
|
||||
use_cached=True,
|
||||
max_cached_images=40,
|
||||
max_cached_images=mosaic_max_cached_images,
|
||||
pad_val=114.0),
|
||||
dict(
|
||||
type='mmdet.RandomResize',
|
||||
# img_scale is (width, height)
|
||||
scale=(img_scale[0] * 2, img_scale[1] * 2),
|
||||
ratio_range=(0.5, 2.0), # note
|
||||
ratio_range=random_resize_ratio_range, # note
|
||||
resize_type='mmdet.Resize',
|
||||
keep_ratio=True),
|
||||
dict(type='mmdet.RandomCrop', crop_size=img_scale),
|
||||
dict(type='mmdet.YOLOXHSVRandomAug'),
|
||||
dict(type='mmdet.RandomFlip', prob=0.5),
|
||||
dict(type='mmdet.Pad', size=img_scale, pad_val=dict(img=(114, 114, 114))),
|
||||
dict(type='YOLOv5MixUp', use_cached=True, max_cached_images=20),
|
||||
dict(
|
||||
type='YOLOv5MixUp',
|
||||
use_cached=True,
|
||||
max_cached_images=mixup_max_cached_images),
|
||||
dict(type='mmdet.PackDetInputs')
|
||||
]
|
||||
|
||||
|
@ -53,7 +65,7 @@ train_pipeline_stage2 = [
|
|||
dict(
|
||||
type='mmdet.RandomResize',
|
||||
scale=img_scale,
|
||||
ratio_range=(0.5, 2.0), # note
|
||||
ratio_range=random_resize_ratio_range, # note
|
||||
resize_type='mmdet.Resize',
|
||||
keep_ratio=True),
|
||||
dict(type='mmdet.RandomCrop', crop_size=img_scale),
|
||||
|
@ -75,6 +87,6 @@ custom_hooks = [
|
|||
priority=49),
|
||||
dict(
|
||||
type='mmdet.PipelineSwitchHook',
|
||||
switch_epoch=_base_.max_epochs - _base_.stage2_num_epochs,
|
||||
switch_epoch=_base_.max_epochs - _base_.num_epochs_stage2,
|
||||
switch_pipeline=train_pipeline_stage2)
|
||||
]
|
||||
|
|
|
@ -1,11 +1,19 @@
|
|||
_base_ = './rtmdet_s_syncbn_fast_8xb32-300e_coco.py'
|
||||
|
||||
checkpoint = 'https://download.openmmlab.com/mmdetection/v3.0/rtmdet/cspnext_rsb_pretrain/cspnext-tiny_imagenet_600e.pth' # noqa
|
||||
|
||||
# ========================modified parameters======================
|
||||
deepen_factor = 0.167
|
||||
widen_factor = 0.375
|
||||
img_scale = _base_.img_scale
|
||||
|
||||
# ratio range for random resize
|
||||
random_resize_ratio_range = (0.5, 2.0)
|
||||
# Number of cached images in mosaic
|
||||
mosaic_max_cached_images = 20
|
||||
# Number of cached images in mixup
|
||||
mixup_max_cached_images = 10
|
||||
|
||||
# =======================Unmodified in most cases==================
|
||||
model = dict(
|
||||
backbone=dict(
|
||||
deepen_factor=deepen_factor,
|
||||
|
@ -24,14 +32,14 @@ train_pipeline = [
|
|||
type='Mosaic',
|
||||
img_scale=img_scale,
|
||||
use_cached=True,
|
||||
max_cached_images=20, # note
|
||||
max_cached_images=mosaic_max_cached_images, # note
|
||||
random_pop=False, # note
|
||||
pad_val=114.0),
|
||||
dict(
|
||||
type='mmdet.RandomResize',
|
||||
# img_scale is (width, height)
|
||||
scale=(img_scale[0] * 2, img_scale[1] * 2),
|
||||
ratio_range=(0.5, 2.0),
|
||||
ratio_range=random_resize_ratio_range,
|
||||
resize_type='mmdet.Resize',
|
||||
keep_ratio=True),
|
||||
dict(type='mmdet.RandomCrop', crop_size=img_scale),
|
||||
|
@ -42,7 +50,7 @@ train_pipeline = [
|
|||
type='YOLOv5MixUp',
|
||||
use_cached=True,
|
||||
random_pop=False,
|
||||
max_cached_images=10,
|
||||
max_cached_images=mixup_max_cached_images,
|
||||
prob=0.5),
|
||||
dict(type='mmdet.PackDetInputs')
|
||||
]
|
||||
|
|
|
@ -1,8 +1,10 @@
|
|||
_base_ = './rtmdet_l_syncbn_fast_8xb32-300e_coco.py'
|
||||
|
||||
# ========================modified parameters======================
|
||||
deepen_factor = 1.33
|
||||
widen_factor = 1.25
|
||||
|
||||
# =======================Unmodified in most cases==================
|
||||
model = dict(
|
||||
backbone=dict(deepen_factor=deepen_factor, widen_factor=widen_factor),
|
||||
neck=dict(deepen_factor=deepen_factor, widen_factor=widen_factor),
|
||||
|
|
|
@ -27,7 +27,7 @@ anchors = [
|
|||
]
|
||||
|
||||
# -----train val related-----
|
||||
# Base learning rate for optim_wrapper. Corresponding to 8xb16=64 bs
|
||||
# Base learning rate for optim_wrapper. Corresponding to 8xb16=128 bs
|
||||
base_lr = 0.01
|
||||
max_epochs = 300 # Maximum training epochs
|
||||
|
||||
|
@ -77,12 +77,12 @@ loss_cls_weight = 0.5
|
|||
loss_bbox_weight = 0.05
|
||||
loss_obj_weight = 1.0
|
||||
prior_match_thr = 4. # Priori box matching threshold
|
||||
obj_level_weights = [4., 1.,
|
||||
0.4] # The obj loss weights of the three output layers
|
||||
# The obj loss weights of the three output layers
|
||||
obj_level_weights = [4., 1., 0.4]
|
||||
lr_factor = 0.01 # Learning rate scaling factor
|
||||
weight_decay = 0.0005
|
||||
# Save model checkpoint and validation intervals
|
||||
save_epoch_intervals = 10
|
||||
save_checkpoint_intervals = 10
|
||||
# The maximum checkpoints to keep.
|
||||
max_keep_ckpts = 3
|
||||
# Single-scale training is recommended to
|
||||
|
@ -263,7 +263,7 @@ default_hooks = dict(
|
|||
max_epochs=max_epochs),
|
||||
checkpoint=dict(
|
||||
type='CheckpointHook',
|
||||
interval=save_epoch_intervals,
|
||||
interval=save_checkpoint_intervals,
|
||||
save_best='auto',
|
||||
max_keep_ckpts=max_keep_ckpts))
|
||||
|
||||
|
@ -287,6 +287,6 @@ test_evaluator = val_evaluator
|
|||
train_cfg = dict(
|
||||
type='EpochBasedTrainLoop',
|
||||
max_epochs=max_epochs,
|
||||
val_interval=save_epoch_intervals)
|
||||
val_interval=save_checkpoint_intervals)
|
||||
val_cfg = dict(type='ValLoop')
|
||||
test_cfg = dict(type='TestLoop')
|
||||
|
|
Loading…
Reference in New Issue