mirror of https://github.com/open-mmlab/mmyolo.git
add changelog (#851)
parent
729bdacecf
commit
fa86dd2284
18
README.md
18
README.md
|
@ -77,17 +77,13 @@ English | [简体中文](README_zh-CN.md)
|
|||
|
||||
## 🥳 🚀 What's New [🔝](#-table-of-contents)
|
||||
|
||||
💎 **v0.5.0** was released on 2/3/2023:
|
||||
💎 **v0.6.0** was released on 15/8/2023:
|
||||
|
||||
1. Support [RTMDet-R](https://github.com/open-mmlab/mmyolo/blob/dev/configs/rtmdet/README.md#rotated-object-detection) rotated object detection
|
||||
2. Support for using mask annotation to improve [YOLOv8](https://github.com/open-mmlab/mmyolo/blob/dev/configs/yolov8/README.md) object detection performance
|
||||
3. Support [MMRazor](https://github.com/open-mmlab/mmyolo/blob/dev/configs/razor/subnets/README.md) searchable NAS sub-network as the backbone of YOLO series algorithm
|
||||
4. Support calling [MMRazor](https://github.com/open-mmlab/mmyolo/blob/dev/configs/rtmdet/distillation/README.md) to distill the knowledge of RTMDet
|
||||
5. [MMYOLO](https://mmyolo.readthedocs.io/zh_CN/dev/) document structure optimization, comprehensive content upgrade
|
||||
6. Improve YOLOX mAP and training speed based on RTMDet training hyperparameters
|
||||
7. Support calculation of model parameters and FLOPs, provide GPU latency data on T4 devices, and update [Model Zoo](https://github.com/open-mmlab/mmyolo/blob/dev/docs/en/model_zoo.md)
|
||||
8. Support test-time augmentation (TTA)
|
||||
9. Support RTMDet, YOLOv8 and YOLOv7 assigner visualization
|
||||
- Support YOLOv5 instance segmentation
|
||||
- Support YOLOX-Pose based on MMPose
|
||||
- Add 15 minutes instance segmentation tutorial.
|
||||
- YOLOv5 supports using mask annotation to optimize bbox
|
||||
- Add Multi-scale training and testing docs
|
||||
|
||||
For release history and update details, please refer to [changelog](https://mmyolo.readthedocs.io/en/latest/notes/changelog.html).
|
||||
|
||||
|
@ -150,7 +146,7 @@ conda activate mmyolo
|
|||
pip install openmim
|
||||
mim install "mmengine>=0.6.0"
|
||||
mim install "mmcv>=2.0.0rc4,<2.1.0"
|
||||
mim install "mmdet>=3.0.0rc6,<3.1.0"
|
||||
mim install "mmdet>=3.0.0,<4.0.0"
|
||||
git clone https://github.com/open-mmlab/mmyolo.git
|
||||
cd mmyolo
|
||||
# Install albumentations
|
||||
|
|
|
@ -78,17 +78,13 @@
|
|||
|
||||
## 🥳 🚀 最新进展 [🔝](#-table-of-contents)
|
||||
|
||||
💎 **v0.5.0** 版本已经在 2023.3.2 发布:
|
||||
💎 **v0.6.0** 版本已经在 2023.8.15 发布:
|
||||
|
||||
1. 支持了 [RTMDet-R](https://github.com/open-mmlab/mmyolo/blob/dev/configs/rtmdet/README.md#rotated-object-detection) 旋转框目标检测任务和算法
|
||||
2. [YOLOv8](https://github.com/open-mmlab/mmyolo/blob/dev/configs/yolov8/README.md) 支持使用 mask 标注提升目标检测模型性能
|
||||
3. 支持 [MMRazor](https://github.com/open-mmlab/mmyolo/blob/dev/configs/razor/subnets/README.md) 搜索的 NAS 子网络作为 YOLO 系列算法的 backbone
|
||||
4. 支持调用 [MMRazor](https://github.com/open-mmlab/mmyolo/blob/dev/configs/rtmdet/distillation/README.md) 对 RTMDet 进行知识蒸馏
|
||||
5. [MMYOLO](https://mmyolo.readthedocs.io/zh_CN/dev/) 文档结构优化,内容全面升级
|
||||
6. 基于 RTMDet 训练超参提升 YOLOX 精度和训练速度
|
||||
7. 支持模型参数量、FLOPs 计算和提供 T4 设备上 GPU 延时数据,并更新了 [Model Zoo](https://github.com/open-mmlab/mmyolo/blob/dev/docs/zh_cn/model_zoo.md)
|
||||
8. 支持测试时增强 TTA
|
||||
9. 支持 RTMDet、YOLOv8 和 YOLOv7 assigner 可视化
|
||||
- 支持 YOLOv5 实例分割
|
||||
- 基于 MMPose 支持 YOLOX-Pose
|
||||
- 添加 15 分钟的实例分割教程
|
||||
- YOLOv5 支持使用 mask 标注来优化边界框
|
||||
- 添加多尺度训练和测试文档
|
||||
|
||||
我们提供了实用的**脚本命令速查表**
|
||||
|
||||
|
@ -171,7 +167,7 @@ conda activate mmyolo
|
|||
pip install openmim
|
||||
mim install "mmengine>=0.6.0"
|
||||
mim install "mmcv>=2.0.0rc4,<2.1.0"
|
||||
mim install "mmdet>=3.0.0rc6,<3.1.0"
|
||||
mim install "mmdet>=3.0.0,<4.0.0"
|
||||
git clone https://github.com/open-mmlab/mmyolo.git
|
||||
cd mmyolo
|
||||
# Install albumentations
|
||||
|
|
|
@ -26,7 +26,7 @@ RUN apt-get update \
|
|||
|
||||
# Install MMEngine , MMCV and MMDet
|
||||
RUN pip install --no-cache-dir openmim && \
|
||||
mim install --no-cache-dir "mmengine>=0.6.0" "mmcv>=2.0.0rc4,<2.1.0" "mmdet>=3.0.0rc6,<3.1.0"
|
||||
mim install --no-cache-dir "mmengine>=0.6.0" "mmcv>=2.0.0rc4,<2.1.0" "mmdet>=3.0.0,<4.0.0"
|
||||
|
||||
# Install MMYOLO
|
||||
RUN git clone https://github.com/open-mmlab/mmyolo.git /mmyolo && \
|
||||
|
|
|
@ -30,7 +30,7 @@ RUN wget -q https://github.com/microsoft/onnxruntime/releases/download/v${ONNXRU
|
|||
|
||||
# Install OPENMIM MMENGINE MMDET
|
||||
RUN pip install --no-cache-dir openmim \
|
||||
&& mim install --no-cache-dir "mmengine>=0.6.0" "mmdet>=3.0.0rc6,<3.1.0" \
|
||||
&& mim install --no-cache-dir "mmengine>=0.6.0" "mmdet>=3.0.0,<4.0.0" \
|
||||
&& mim install --no-cache-dir opencv-python==4.5.5.64 opencv-python-headless==4.5.5.64
|
||||
|
||||
RUN git clone https://github.com/open-mmlab/mmcv.git -b 2.x mmcv \
|
||||
|
|
|
@ -8,7 +8,7 @@
|
|||
pip install -U openmim
|
||||
mim install "mmengine>=0.6.0"
|
||||
mim install "mmcv>=2.0.0rc4,<2.1.0"
|
||||
mim install "mmdet>=3.0.0rc6,<3.1.0"
|
||||
mim install "mmdet>=3.0.0,<4.0.0"
|
||||
```
|
||||
|
||||
If you are currently in the mmyolo project directory, you can use the following simplified commands
|
||||
|
|
|
@ -1,5 +1,43 @@
|
|||
# Changelog
|
||||
|
||||
## v0.6.0 (15/8/2023)
|
||||
|
||||
### Highlights
|
||||
|
||||
- Support YOLOv5 instance segmentation
|
||||
- Support YOLOX-Pose based on MMPose
|
||||
- Add 15 minutes instance segmentation tutorial.
|
||||
- YOLOv5 supports using mask annotation to optimize bbox
|
||||
- Add Multi-scale training and testing docs
|
||||
|
||||
### New Features
|
||||
|
||||
- Add training and testing tricks doc (#659)
|
||||
- Support setting the cache_size_limit parameter and support mmdet 3.0.0 (#707)
|
||||
- Support YOLOv5u and YOLOv6 3.0 inference (#624, #744)
|
||||
- Support model-only inference (#733)
|
||||
- Add YOLOv8 deepstream config (#633)
|
||||
- Add ionogram example in MMYOLO application (#643)
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
- Fix the browse_dataset for visualization of test and val (#641)
|
||||
- Fix installation doc error (#662)
|
||||
- Fix yolox-l ckpt link (#677)
|
||||
- Fix typos in the YOLOv7 and YOLOv8 diagram (#621, #710)
|
||||
- Adjust the order of package imports in `boxam_vis_demo.py` (#655)
|
||||
|
||||
### Improvements
|
||||
|
||||
- Optimize the `convert_kd_ckpt_to_student.py` file (#647)
|
||||
- Add en doc of `FAQ` and `training_testing_tricks` (#691,#693)
|
||||
|
||||
### Contributors
|
||||
|
||||
A total of 21 developers contributed to this release.
|
||||
|
||||
Thank @Lum1104,@azure-wings,@FeiGeChuanShu,@Lingrui Gu,@Nioolek,@huayuan4396,@RangeKing,@danielhonies,@yechenzhi,@JosonChan1998,@kitecats,@Qingrenn,@triple-Mu,@kikefdezl,@zhangrui-wolf,@xin-li-67,@Ben-Louis,@zgzhengSEU,@VoyagerXvoyagerx,@tang576225574,@hhaAndroid
|
||||
|
||||
## v0.5.0 (2/3/2023)
|
||||
|
||||
### Highlights
|
||||
|
|
|
@ -75,7 +75,7 @@ thus we only need to install MMEngine, MMCV, MMDetection, and MMYOLO with the fo
|
|||
!pip3 install openmim
|
||||
!mim install "mmengine>=0.6.0"
|
||||
!mim install "mmcv>=2.0.0rc4,<2.1.0"
|
||||
!mim install "mmdet>=3.0.0rc6,<3.1.0"
|
||||
!mim install "mmdet>=3.0.0,<4.0.0"
|
||||
```
|
||||
|
||||
**Step 2.** Install MMYOLO from the source.
|
||||
|
|
|
@ -8,7 +8,7 @@
|
|||
pip install -U openmim
|
||||
mim install "mmengine>=0.6.0"
|
||||
mim install "mmcv>=2.0.0rc4,<2.1.0"
|
||||
mim install "mmdet>=3.0.0rc6,<3.1.0"
|
||||
mim install "mmdet>=3.0.0,<4.0.0"
|
||||
```
|
||||
|
||||
如果你当前已经处于 mmyolo 工程目录下,则可以采用如下简化写法
|
||||
|
|
|
@ -1,5 +1,43 @@
|
|||
# 更新日志
|
||||
|
||||
## v0.6.0 (15/8/2023)
|
||||
|
||||
### 亮点
|
||||
|
||||
- 支持 YOLOv5 实例分割
|
||||
- 基于 MMPose 支持 YOLOX-Pose
|
||||
- 添加 15 分钟的实例分割教程
|
||||
- YOLOv5 支持使用 mask 标注来优化边界框
|
||||
- 添加多尺度训练和测试文档
|
||||
|
||||
### 新特性
|
||||
|
||||
- 添加训练和测试技巧文档 (#659)
|
||||
- 支持设置 `cache_size_limit` 参数,并支持 mmdet 3.0.0 (#707)
|
||||
- 支持 YOLOv5u 和 YOLOv6 3.0 推理 (#624, #744)
|
||||
- 支持仅模型推断 (#733)
|
||||
- 添加 YOLOv8 deepstream 配置 (#633)
|
||||
- 在 MMYOLO 应用程序中添加电离图示例 (#643)
|
||||
|
||||
### Bug 修复
|
||||
|
||||
- 修复 browse_dataset 以可视化测试和验证集的问题 (#641)
|
||||
- 修复安装文档错误 (#662)
|
||||
- 修复 yolox-l ckpt 链接 (#677)
|
||||
- 修正 YOLOv7 和 YOLOv8 图表中的拼写错误 (#621, #710)
|
||||
- 调整 `boxam_vis_demo.py` 中包导入的顺序 (#655)
|
||||
|
||||
### 完善
|
||||
|
||||
- 优化 `convert_kd_ckpt_to_student.py` 文件 (#647)
|
||||
- 添加 FAQ 和 training_testing_tricks 的英文文档 (#691, #693)
|
||||
|
||||
### 贡献者
|
||||
|
||||
总共 21 位开发者参与了本次版本
|
||||
|
||||
感谢 @Lum1104,@azure-wings,@FeiGeChuanShu,@Lingrui Gu,@Nioolek,@huayuan4396,@RangeKing,@danielhonies,@yechenzhi,@JosonChan1998,@kitecats,@Qingrenn,@triple-Mu,@kikefdezl,@zhangrui-wolf,@xin-li-67,@Ben-Louis,@zgzhengSEU,@VoyagerXvoyagerx,@tang576225574,@hhaAndroid
|
||||
|
||||
## v0.5.0 (2/3/2023)
|
||||
|
||||
### 亮点
|
||||
|
|
|
@ -77,7 +77,7 @@ pip install "mmcv>=2.0.0rc4" -f https://download.openmmlab.com/mmcv/dist/cu116/t
|
|||
!pip3 install openmim
|
||||
!mim install "mmengine>=0.6.0"
|
||||
!mim install "mmcv>=2.0.0rc4,<2.1.0"
|
||||
!mim install "mmdet>=3.0.0rc6,<3.1.0"
|
||||
!mim install "mmdet>=3.0.0,<4.0.0"
|
||||
```
|
||||
|
||||
**步骤 2.** 使用源码安装 MMYOLO:
|
||||
|
|
|
@ -15,7 +15,7 @@ mmengine_maximum_version = '1.0.0'
|
|||
mmengine_version = digit_version(mmengine.__version__)
|
||||
|
||||
mmdet_minimum_version = '3.0.0'
|
||||
mmdet_maximum_version = '3.1.0'
|
||||
mmdet_maximum_version = '4.0.0'
|
||||
mmdet_version = digit_version(mmdet.__version__)
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue