# Copyright (c) OpenMMLab. All rights reserved. import logging import os import urllib from argparse import ArgumentParser import mmcv import torch from mmdet.apis import inference_detector, init_detector from mmengine.logging import print_log from mmengine.utils import ProgressBar, scandir from mmyolo.registry import VISUALIZERS from mmyolo.utils import register_all_modules IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp') def parse_args(): parser = ArgumentParser() parser.add_argument( 'img', help='Image path, include image file, dir and URL.') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument( '--out-dir', default='./output', help='Path to output file') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--show', action='store_true', help='Show the detection results') parser.add_argument( '--score-thr', type=float, default=0.3, help='bbox score threshold') args = parser.parse_args() return args def main(args): # register all modules in mmdet into the registries register_all_modules() # build the model from a config file and a checkpoint file model = init_detector(args.config, args.checkpoint, device=args.device) # init visualizer visualizer = VISUALIZERS.build(model.cfg.visualizer) visualizer.dataset_meta = model.dataset_meta is_dir = os.path.isdir(args.img) is_url = args.img.startswith(('http:/', 'https:/')) is_file = os.path.splitext(args.img)[-1] in (IMG_EXTENSIONS) files = [] if is_dir: # when input source is dir for file in scandir(args.img, IMG_EXTENSIONS, recursive=True): files.append(os.path.join(args.img, file)) elif is_url: # when input source is url filename = os.path.basename( urllib.parse.unquote(args.img).split('?')[0]) torch.hub.download_url_to_file(args.img, filename) files = [os.path.join(os.getcwd(), filename)] elif is_file: # when input source is single image files = [args.img] else: print_log( 'Cannot find image file.', logger='current', level=logging.WARNING) # start detector inference progress_bar = ProgressBar(len(files)) for file in files: result = inference_detector(model, file) img = mmcv.imread(file) img = mmcv.imconvert(img, 'bgr', 'rgb') if is_dir: filename = os.path.relpath(file, args.img).replace('/', '_') else: filename = os.path.basename(file) out_file = None if args.show else os.path.join(args.out_dir, filename) visualizer.add_datasample( filename, img, data_sample=result, draw_gt=False, show=args.show, wait_time=0, out_file=out_file, pred_score_thr=args.score_thr) progress_bar.update() if not args.show: print_log( f'\nResults have been saved at {os.path.abspath(args.out_dir)}') if __name__ == '__main__': args = parse_args() main(args)