# Copyright (c) OpenMMLab. All rights reserved. import os from argparse import ArgumentParser import mmcv from mmdet.apis import inference_detector, init_detector from mmengine.logging import print_log from mmengine.utils import ProgressBar from mmyolo.registry import VISUALIZERS from mmyolo.utils import register_all_modules, switch_to_deploy from mmyolo.utils.labelme_utils import LabelmeFormat from mmyolo.utils.misc import get_file_list def parse_args(): parser = ArgumentParser() parser.add_argument( 'img', help='Image path, include image file, dir and URL.') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument( '--out-dir', default='./output', help='Path to output file') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--show', action='store_true', help='Show the detection results') parser.add_argument( '--deploy', action='store_true', help='Switch model to deployment mode') parser.add_argument( '--score-thr', type=float, default=0.3, help='Bbox score threshold') parser.add_argument( '--to-labelme', action='store_true', help='Output labelme style label file') args = parser.parse_args() return args def main(): args = parse_args() if args.to_labelme and args.show: raise RuntimeError('`--to-labelme` or `--show` only ' 'can choose one at the same time.') # register all modules in mmdet into the registries register_all_modules() # build the model from a config file and a checkpoint file model = init_detector(args.config, args.checkpoint, device=args.device) if args.deploy: switch_to_deploy(model) if not os.path.exists(args.out_dir) and not args.show: os.mkdir(args.out_dir) # init visualizer visualizer = VISUALIZERS.build(model.cfg.visualizer) visualizer.dataset_meta = model.dataset_meta # get file list files, source_type = get_file_list(args.img) # ready for labelme format if it is needed to_label_format = LabelmeFormat(classes=model.dataset_meta.get('CLASSES')) # start detector inference progress_bar = ProgressBar(len(files)) for file in files: result = inference_detector(model, file) img = mmcv.imread(file) img = mmcv.imconvert(img, 'bgr', 'rgb') if source_type['is_dir']: filename = os.path.relpath(file, args.img).replace('/', '_') else: filename = os.path.basename(file) out_file = None if args.show else os.path.join(args.out_dir, filename) progress_bar.update() # Get candidate predict info with score threshold pred_instances = result.pred_instances[ result.pred_instances.scores > args.score_thr] if args.to_labelme: # save result to labelme files out_file = out_file.replace( os.path.splitext(out_file)[-1], '.json') to_label_format(result, out_file, pred_instances) continue visualizer.add_datasample( filename, img, data_sample=result, draw_gt=False, show=args.show, wait_time=0, out_file=out_file, pred_score_thr=args.score_thr) if not args.show and not args.to_labelme: print_log( f'\nResults have been saved at {os.path.abspath(args.out_dir)}') elif args.to_labelme: print_log('\nLabelme format label files ' f'had all been saved in {args.out_dir}') if __name__ == '__main__': main()