# Copyright (c) OpenMMLab. All rights reserved. from argparse import ArgumentParser import mmcv from mmdet.apis import inference_detector, init_detector from mmyolo.registry import VISUALIZERS from mmyolo.utils import register_all_modules def parse_args(): parser = ArgumentParser() parser.add_argument('img', default='dog.jpg', help='Image file') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument('--out-file', default=None, help='Path to output file') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--palette', default='coco', choices=['coco', 'voc', 'citys', 'random'], help='Color palette used for visualization') parser.add_argument( '--score-thr', type=float, default=0.3, help='bbox score threshold') args = parser.parse_args() return args def main(args): # register all modules in mmdet into the registries register_all_modules() # TODO: Support inference of image directory. # build the model from a config file and a checkpoint file model = init_detector(args.config, args.checkpoint, device=args.device) # init visualizer visualizer = VISUALIZERS.build(model.cfg.visualizer) visualizer.dataset_meta = model.dataset_meta # test a single image result = inference_detector(model, args.img) # show the results img = mmcv.imread(args.img) img = mmcv.imconvert(img, 'bgr', 'rgb') visualizer.add_datasample( 'result', img, data_sample=result, draw_gt=False, show=True, wait_time=0, out_file=args.out_file, pred_score_thr=args.score_thr) if __name__ == '__main__': args = parse_args() main(args)