_base_ = './yolox_s_8xb8-300e_coco.py' deepen_factor = 0.33 widen_factor = 0.375 # model settings model = dict( data_preprocessor=dict(batch_augments=[ dict( type='mmdet.BatchSyncRandomResize', random_size_range=(320, 640), # note size_divisor=32, interval=10) ]), backbone=dict(deepen_factor=deepen_factor, widen_factor=widen_factor), neck=dict(deepen_factor=deepen_factor, widen_factor=widen_factor), bbox_head=dict(head_module=dict(widen_factor=widen_factor))) img_scale = _base_.img_scale pre_transform = _base_.pre_transform train_pipeline_stage1 = [ *pre_transform, dict( type='Mosaic', img_scale=img_scale, pad_val=114.0, pre_transform=pre_transform), dict( type='mmdet.RandomAffine', scaling_ratio_range=(0.5, 1.5), # note border=(-img_scale[0] // 2, -img_scale[1] // 2)), dict(type='mmdet.YOLOXHSVRandomAug'), dict(type='mmdet.RandomFlip', prob=0.5), dict( type='mmdet.FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False), dict( type='mmdet.PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip', 'flip_direction')) ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=_base_.file_client_args), dict(type='mmdet.Resize', scale=(416, 416), keep_ratio=True), # note dict( type='mmdet.Pad', pad_to_square=True, pad_val=dict(img=(114.0, 114.0, 114.0))), dict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'), dict( type='mmdet.PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline_stage1)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader