# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import pytest import torch from parameterized import parameterized from torch.nn.modules.batchnorm import _BatchNorm from mmyolo.models.backbones import YOLOv5CSPDarknet, YOLOXCSPDarknet from mmyolo.utils import register_all_modules from .utils import check_norm_state, is_norm register_all_modules() class TestCSPDarknet(TestCase): @parameterized.expand([(YOLOv5CSPDarknet, ), (YOLOXCSPDarknet, )]) def test_init(self, module_class): # out_indices in range(len(arch_setting) + 1) with pytest.raises(AssertionError): module_class(out_indices=(6, )) with pytest.raises(ValueError): # frozen_stages must in range(-1, len(arch_setting) + 1) module_class(frozen_stages=6) @parameterized.expand([(YOLOv5CSPDarknet, ), (YOLOXCSPDarknet, )]) def test_forward(self, module_class): # Test CSPDarknet with first stage frozen frozen_stages = 1 model = module_class(frozen_stages=frozen_stages) model.init_weights() model.train() for mod in model.stem.modules(): for param in mod.parameters(): assert param.requires_grad is False for i in range(1, frozen_stages + 1): layer = getattr(model, f'stage{i}') for mod in layer.modules(): if isinstance(mod, _BatchNorm): assert mod.training is False for param in layer.parameters(): assert param.requires_grad is False # Test CSPDarknet with norm_eval=True model = module_class(norm_eval=True) model.train() assert check_norm_state(model.modules(), False) # Test CSPDarknet-P5 forward with widen_factor=0.25 model = module_class( arch='P5', widen_factor=0.25, out_indices=range(0, 5)) model.train() imgs = torch.randn(1, 3, 64, 64) feat = model(imgs) assert len(feat) == 5 assert feat[0].shape == torch.Size((1, 16, 32, 32)) assert feat[1].shape == torch.Size((1, 32, 16, 16)) assert feat[2].shape == torch.Size((1, 64, 8, 8)) assert feat[3].shape == torch.Size((1, 128, 4, 4)) assert feat[4].shape == torch.Size((1, 256, 2, 2)) # Test CSPDarknet forward with dict(type='ReLU') model = module_class( widen_factor=0.125, act_cfg=dict(type='ReLU'), out_indices=range(0, 5)) model.train() imgs = torch.randn(1, 3, 64, 64) feat = model(imgs) assert len(feat) == 5 assert feat[0].shape == torch.Size((1, 8, 32, 32)) assert feat[1].shape == torch.Size((1, 16, 16, 16)) assert feat[2].shape == torch.Size((1, 32, 8, 8)) assert feat[3].shape == torch.Size((1, 64, 4, 4)) assert feat[4].shape == torch.Size((1, 128, 2, 2)) # Test CSPDarknet with BatchNorm forward model = module_class(widen_factor=0.125, out_indices=range(0, 5)) for m in model.modules(): if is_norm(m): assert isinstance(m, _BatchNorm) model.train() imgs = torch.randn(1, 3, 64, 64) feat = model(imgs) assert len(feat) == 5 assert feat[0].shape == torch.Size((1, 8, 32, 32)) assert feat[1].shape == torch.Size((1, 16, 16, 16)) assert feat[2].shape == torch.Size((1, 32, 8, 8)) assert feat[3].shape == torch.Size((1, 64, 4, 4)) assert feat[4].shape == torch.Size((1, 128, 2, 2))