_base_ = '../_base_/default_runtime.py' # dataset settings data_root = 'data/coco/' dataset_type = 'YOLOv5CocoDataset' # parameters that often need to be modified num_classes = 80 img_scale = (640, 640) # height, width deepen_factor = 0.33 widen_factor = 0.5 max_epochs = 500 save_epoch_intervals = 10 train_batch_size_per_gpu = 16 train_num_workers = 8 val_batch_size_per_gpu = 1 val_num_workers = 2 # persistent_workers must be False if num_workers is 0. persistent_workers = True strides = [8, 16, 32] num_det_layers = 3 last_stage_out_channels = 1024 # Base learning rate for optim_wrapper base_lr = 0.01 lr_factor = 0.01 # single-scale training is recommended to # be turned on, which can speed up training. env_cfg = dict(cudnn_benchmark=True) model = dict( type='YOLODetector', data_preprocessor=dict( type='YOLOv5DetDataPreprocessor', mean=[0., 0., 0.], std=[255., 255., 255.], bgr_to_rgb=True), backbone=dict( type='YOLOv8CSPDarknet', arch='P5', last_stage_out_channels=last_stage_out_channels, deepen_factor=deepen_factor, widen_factor=widen_factor, norm_cfg=dict(type='BN', momentum=0.03, eps=0.001), act_cfg=dict(type='SiLU', inplace=True)), neck=dict( type='YOLOv8PAFPN', deepen_factor=deepen_factor, widen_factor=widen_factor, in_channels=[256, 512, last_stage_out_channels], out_channels=[256, 512, last_stage_out_channels], num_csp_blocks=3, norm_cfg=dict(type='BN', momentum=0.03, eps=0.001), act_cfg=dict(type='SiLU', inplace=True)), bbox_head=dict( type='YOLOv8Head', head_module=dict( type='YOLOv8HeadModule', num_classes=num_classes, in_channels=[256, 512, last_stage_out_channels], widen_factor=widen_factor, reg_max=16, norm_cfg=dict(type='BN', momentum=0.03, eps=0.001), act_cfg=dict(type='SiLU', inplace=True), featmap_strides=[8, 16, 32]), prior_generator=dict( type='mmdet.MlvlPointGenerator', offset=0.5, strides=[8, 16, 32]), bbox_coder=dict(type='DistancePointBBoxCoder'), loss_cls=dict( type='mmdet.CrossEntropyLoss', use_sigmoid=True, reduction='none', loss_weight=0.5), loss_bbox=dict( type='IoULoss', iou_mode='ciou', bbox_format='xyxy', reduction='sum', loss_weight=7.5, return_iou=False), # Since the dfloss is implemented differently in the official # and mmdet, we're going to divide loss_weight by 4. loss_dfl=dict( type='mmdet.DistributionFocalLoss', reduction='mean', loss_weight=1.5 / 4)), train_cfg=dict( assigner=dict( type='BatchTaskAlignedAssigner', num_classes=num_classes, use_ciou=True, topk=10, alpha=0.5, beta=6.0, eps=1e-9)), test_cfg=dict( multi_label=True, nms_pre=30000, score_thr=0.001, nms=dict(type='nms', iou_threshold=0.7), max_per_img=300)) albu_train_transform = [ dict(type='Blur', p=0.01), dict(type='MedianBlur', p=0.01), dict(type='ToGray', p=0.01), dict(type='CLAHE', p=0.01) ] pre_transform = [ dict(type='LoadImageFromFile', file_client_args=_base_.file_client_args), dict(type='LoadAnnotations', with_bbox=True) ] last_transform = [ dict( type='mmdet.Albu', transforms=albu_train_transform, bbox_params=dict( type='BboxParams', format='pascal_voc', label_fields=['gt_bboxes_labels', 'gt_ignore_flags']), keymap={ 'img': 'image', 'gt_bboxes': 'bboxes' }), dict(type='YOLOv5HSVRandomAug'), dict(type='mmdet.RandomFlip', prob=0.5), dict( type='mmdet.PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip', 'flip_direction')) ] train_pipeline = [ *pre_transform, dict( type='Mosaic', img_scale=img_scale, pad_val=114.0, pre_transform=pre_transform), dict( type='YOLOv5RandomAffine', max_rotate_degree=0.0, max_shear_degree=0.0, scaling_ratio_range=(0.5, 1.5), max_aspect_ratio=100, # img_scale is (width, height) border=(-img_scale[0] // 2, -img_scale[1] // 2), border_val=(114, 114, 114)), *last_transform ] train_pipeline_stage2 = [ *pre_transform, dict(type='YOLOv5KeepRatioResize', scale=img_scale), dict( type='LetterResize', scale=img_scale, allow_scale_up=True, pad_val=dict(img=114.0)), dict( type='YOLOv5RandomAffine', max_rotate_degree=0.0, max_shear_degree=0.0, scaling_ratio_range=(0.5, 1.5), max_aspect_ratio=100, border_val=(114, 114, 114)), *last_transform ] train_dataloader = dict( batch_size=train_batch_size_per_gpu, num_workers=train_num_workers, persistent_workers=persistent_workers, pin_memory=True, sampler=dict(type='DefaultSampler', shuffle=True), collate_fn=dict(type='yolov5_collate'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=False, min_size=32), pipeline=train_pipeline)) test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=_base_.file_client_args), dict(type='YOLOv5KeepRatioResize', scale=img_scale), dict( type='LetterResize', scale=img_scale, allow_scale_up=False, pad_val=dict(img=114)), dict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'), dict( type='mmdet.PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'pad_param')) ] # only on Val # you can turn on `batch_shapes_cfg`, # we tested YOLOv8-m will get 0.02 higher than not using it. batch_shapes_cfg = None # batch_shapes_cfg = dict( # type='BatchShapePolicy', # batch_size=val_batch_size_per_gpu, # img_size=img_scale[0], # size_divisor=32, # extra_pad_ratio=0.5) val_dataloader = dict( batch_size=val_batch_size_per_gpu, num_workers=val_num_workers, persistent_workers=persistent_workers, pin_memory=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, test_mode=True, data_prefix=dict(img='val2017/'), ann_file='annotations/instances_val2017.json', pipeline=test_pipeline, batch_shapes_cfg=batch_shapes_cfg)) test_dataloader = val_dataloader param_scheduler = None optim_wrapper = dict( type='OptimWrapper', clip_grad=dict(max_norm=10.0), optimizer=dict( type='SGD', lr=base_lr, momentum=0.937, weight_decay=0.0005, nesterov=True, batch_size_per_gpu=train_batch_size_per_gpu), constructor='YOLOv5OptimizerConstructor') default_hooks = dict( param_scheduler=dict( type='YOLOv5ParamSchedulerHook', scheduler_type='linear', lr_factor=lr_factor, max_epochs=max_epochs), checkpoint=dict( type='CheckpointHook', interval=save_epoch_intervals, save_best='auto', max_keep_ckpts=2)) custom_hooks = [ dict( type='EMAHook', ema_type='ExpMomentumEMA', momentum=0.0001, update_buffers=True, strict_load=False, priority=49), dict( type='mmdet.PipelineSwitchHook', switch_epoch=max_epochs - 10, switch_pipeline=train_pipeline_stage2) ] val_evaluator = dict( type='mmdet.CocoMetric', proposal_nums=(100, 1, 10), ann_file=data_root + 'annotations/instances_val2017.json', metric='bbox') test_evaluator = val_evaluator train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=save_epoch_intervals, dynamic_intervals=[(max_epochs - 10, 1)]) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop')