# How to xxx
本教程收集了任何如何使用 MMYOLO 进行 xxx 的答案。 如果您遇到有关`如何做`的问题及答案,请随时更新此文档!
## 给主干网络增加插件
[更多的插件使用](plugins.md)
## 应用多个 Neck
如果你想堆叠多个 Neck,可以直接在配置文件中的 Neck 参数,MMYOLO 支持以 `List` 形式拼接多个 Neck 配置,你需要保证上一个 Neck 的输出通道与下一个 Neck
的输入通道相匹配。如需要调整通道,可以插入 `mmdet.ChannelMapper` 模块用来对齐多个 Neck 之间的通道数量。具体配置如下:
```python
_base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'
deepen_factor = _base_.deepen_factor
widen_factor = _base_.widen_factor
model = dict(
type='YOLODetector',
neck=[
dict(
type='YOLOv5PAFPN',
deepen_factor=deepen_factor,
widen_factor=widen_factor,
in_channels=[256, 512, 1024],
out_channels=[256, 512, 1024],
# 因为 out_channels 由 widen_factor 控制,YOLOv5PAFPN 的 out_channels = out_channels * widen_factor
num_csp_blocks=3,
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
act_cfg=dict(type='SiLU', inplace=True)),
dict(
type='mmdet.ChannelMapper',
in_channels=[128, 256, 512],
out_channels=128,
),
dict(
type='mmdet.DyHead',
in_channels=128,
out_channels=256,
num_blocks=2,
# disable zero_init_offset to follow official implementation
zero_init_offset=False)
],
bbox_head=dict(head_module=dict(in_channels=[512, 512, 512]))
# 因为 out_channels 由 widen_factor 控制,YOLOv5HeadModuled 的 in_channels * widen_factor 才会等于最后一个 neck 的 out_channels
)
```
## 更换主干网络
```{note}
1. 使用其他主干网络时,你需要保证主干网络的输出通道与 Neck 的输入通道相匹配。
2. 下面给出的配置文件,仅能确保训练可以正确运行,直接训练性能可能不是最优的。因为某些 backbone 需要配套特定的学习率、优化器等超参数。后续会在“训练技巧章节”补充训练调优相关内容。
```
### 使用 MMYOLO 中注册的主干网络
假设想将 `YOLOv6EfficientRep` 作为 `YOLOv5` 的主干网络,则配置文件如下:
```python
_base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'
model = dict(
backbone=dict(
type='YOLOv6EfficientRep',
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
act_cfg=dict(type='ReLU', inplace=True))
)
```
### 跨库使用主干网络
OpenMMLab 2.0 体系中 MMYOLO、MMDetection、MMClassification、MMSelfsup 中的模型注册表都继承自 MMEngine 中的根注册表,允许这些 OpenMMLab 开源库直接使用彼此已经实现的模块。 因此用户可以在 MMYOLO 中使用来自 MMDetection、MMClassification、MMSelfsup 的主干网络,而无需重新实现。
#### 使用在 MMDetection 中实现的主干网络
1. 假设想将 `ResNet-50` 作为 `YOLOv5` 的主干网络,则配置文件如下:
```python
_base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'
deepen_factor = _base_.deepen_factor
widen_factor = 1.0
channels = [512, 1024, 2048]
model = dict(
backbone=dict(
_delete_=True, # 将 _base_ 中关于 backbone 的字段删除
type='mmdet.ResNet', # 使用 mmdet 中的 ResNet
depth=50,
num_stages=4,
out_indices=(1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
neck=dict(
type='YOLOv5PAFPN',
widen_factor=widen_factor,
in_channels=channels, # 注意:ResNet-50 输出的3个通道是 [512, 1024, 2048],和原先的 yolov5-s neck 不匹配,需要更改
out_channels=channels),
bbox_head=dict(
type='YOLOv5Head',
head_module=dict(
type='YOLOv5HeadModule',
in_channels=channels, # head 部分输入通道也要做相应更改
widen_factor=widen_factor))
)
```
2. 假设想将 `SwinTransformer-Tiny` 作为 `YOLOv5` 的主干网络,则配置文件如下:
```python
_base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'
deepen_factor = _base_.deepen_factor
widen_factor = 1.0
channels = [192, 384, 768]
checkpoint_file = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth' # noqa
model = dict(
backbone=dict(
_delete_=True, # 将 _base_ 中关于 backbone 的字段删除
type='mmdet.SwinTransformer', # 使用 mmdet 中的 SwinTransformer
embed_dims=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
mlp_ratio=4,
qkv_bias=True,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.2,
patch_norm=True,
out_indices=(1, 2, 3),
with_cp=False,
convert_weights=True,
init_cfg=dict(type='Pretrained', checkpoint=checkpoint_file)),
neck=dict(
type='YOLOv5PAFPN',
deepen_factor=deepen_factor,
widen_factor=widen_factor,
in_channels=channels, # 注意:SwinTransformer-Tiny 输出的3个通道是 [192, 384, 768],和原先的 yolov5-s neck 不匹配,需要更改
out_channels=channels),
bbox_head=dict(
type='YOLOv5Head',
head_module=dict(
type='YOLOv5HeadModule',
in_channels=channels, # head 部分输入通道也要做相应更改
widen_factor=widen_factor))
)
```
#### 使用在 MMClassification 中实现的主干网络
1. 假设想将 `ConvNeXt-Tiny` 作为 `YOLOv5` 的主干网络,则配置文件如下:
```python
_base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'
# 请先使用命令: mim install "mmcls>=1.0.0rc2",安装 mmcls
# 导入 mmcls.models 使得可以调用 mmcls 中注册的模块
custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False)
checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-tiny_3rdparty_32xb128-noema_in1k_20220301-795e9634.pth' # noqa
deepen_factor = _base_.deepen_factor
widen_factor = 1.0
channels = [192, 384, 768]
model = dict(
backbone=dict(
_delete_=True, # 将 _base_ 中关于 backbone 的字段删除
type='mmcls.ConvNeXt', # 使用 mmcls 中的 ConvNeXt
arch='tiny',
out_indices=(1, 2, 3),
drop_path_rate=0.4,
layer_scale_init_value=1.0,
gap_before_final_norm=False,
init_cfg=dict(
type='Pretrained', checkpoint=checkpoint_file,
prefix='backbone.')), # MMCls 中主干网络的预训练权重含义 prefix='backbone.',为了正常加载权重,需要把这个 prefix 去掉。
neck=dict(
type='YOLOv5PAFPN',
deepen_factor=deepen_factor,
widen_factor=widen_factor,
in_channels=channels, # 注意:ConvNeXt-Tiny 输出的3个通道是 [192, 384, 768],和原先的 yolov5-s neck 不匹配,需要更改
out_channels=channels),
bbox_head=dict(
type='YOLOv5Head',
head_module=dict(
type='YOLOv5HeadModule',
in_channels=channels, # head 部分输入通道也要做相应更改
widen_factor=widen_factor))
)
```
2. 假设想将 `MobileNetV3-small` 作为 `YOLOv5` 的主干网络,则配置文件如下:
```python
_base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'
# 请先使用命令: mim install "mmcls>=1.0.0rc2",安装 mmcls
# 导入 mmcls.models 使得可以调用 mmcls 中注册的模块
custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False)
checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/mobilenet_v3/convert/mobilenet_v3_small-8427ecf0.pth' # noqa
deepen_factor = _base_.deepen_factor
widen_factor = 1.0
channels = [24, 48, 96]
model = dict(
backbone=dict(
_delete_=True, # 将 _base_ 中关于 backbone 的字段删除
type='mmcls.MobileNetV3', # 使用 mmcls 中的 MobileNetV3
arch='small',
out_indices=(3, 8, 11), # 修改 out_indices
init_cfg=dict(
type='Pretrained',
checkpoint=checkpoint_file,
prefix='backbone.')), # MMCls 中主干网络的预训练权重含义 prefix='backbone.',为了正常加载权重,需要把这个 prefix 去掉。
neck=dict(
type='YOLOv5PAFPN',
deepen_factor=deepen_factor,
widen_factor=widen_factor,
in_channels=channels, # 注意:MobileNetV3-small 输出的3个通道是 [24, 48, 96],和原先的 yolov5-s neck 不匹配,需要更改
out_channels=channels),
bbox_head=dict(
type='YOLOv5Head',
head_module=dict(
type='YOLOv5HeadModule',
in_channels=channels, # head 部分输入通道也要做相应更改
widen_factor=widen_factor))
)
```
#### 通过 MMClassification 使用 `timm` 中实现的主干网络
由于 MMClassification 提供了 Py**T**orch **Im**age **M**odels (`timm`) 主干网络的封装,用户也可以通过 MMClassification 直接使用 `timm` 中的主干网络。假设想将 `EfficientNet-B1`作为 `YOLOv5` 的主干网络,则配置文件如下:
```python
_base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'
# 请先使用命令: mim install "mmcls>=1.0.0rc2",安装 mmcls
# 以及: pip install timm,安装 timm
# 导入 mmcls.models 使得可以调用 mmcls 中注册的模块
custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False)
deepen_factor = _base_.deepen_factor
widen_factor = 1.0
channels = [40, 112, 320]
model = dict(
backbone=dict(
_delete_=True, # 将 _base_ 中关于 backbone 的字段删除
type='mmcls.TIMMBackbone', # 使用 mmcls 中的 timm 主干网络
model_name='efficientnet_b1', # 使用 TIMM 中的 efficientnet_b1
features_only=True,
pretrained=True,
out_indices=(2, 3, 4)),
neck=dict(
type='YOLOv5PAFPN',
deepen_factor=deepen_factor,
widen_factor=widen_factor,
in_channels=channels, # 注意:EfficientNet-B1 输出的3个通道是 [40, 112, 320],和原先的 yolov5-s neck 不匹配,需要更改
out_channels=channels),
bbox_head=dict(
type='YOLOv5Head',
head_module=dict(
type='YOLOv5HeadModule',
in_channels=channels, # head 部分输入通道也要做相应更改
widen_factor=widen_factor))
)
```
#### 使用在 MMSelfSup 中实现的主干网络
假设想将 MMSelfSup 中 `MoCo v3` 自监督训练的 `ResNet-50` 作为 `YOLOv5` 的主干网络,则配置文件如下:
```python
_base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'
# 请先使用命令: mim install "mmselfsup>=1.0.0rc3",安装 mmselfsup
# 导入 mmselfsup.models 使得可以调用 mmselfsup 中注册的模块
custom_imports = dict(imports=['mmselfsup.models'], allow_failed_imports=False)
checkpoint_file = 'https://download.openmmlab.com/mmselfsup/1.x/mocov3/mocov3_resnet50_8xb512-amp-coslr-800e_in1k/mocov3_resnet50_8xb512-amp-coslr-800e_in1k_20220927-e043f51a.pth' # noqa
deepen_factor = _base_.deepen_factor
widen_factor = 1.0
channels = [512, 1024, 2048]
model = dict(
backbone=dict(
_delete_=True, # 将 _base_ 中关于 backbone 的字段删除
type='mmselfsup.ResNet',
depth=50,
num_stages=4,
out_indices=(2, 3, 4), # 注意:MMSelfSup 中 ResNet 的 out_indices 比 MMdet 和 MMCls 的要大 1
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint=checkpoint_file)),
neck=dict(
type='YOLOv5PAFPN',
deepen_factor=deepen_factor,
widen_factor=widen_factor,
in_channels=channels, # 注意:ResNet-50 输出的3个通道是 [512, 1024, 2048],和原先的 yolov5-s neck 不匹配,需要更改
out_channels=channels),
bbox_head=dict(
type='YOLOv5Head',
head_module=dict(
type='YOLOv5HeadModule',
in_channels=channels, # head 部分输入通道也要做相应更改
widen_factor=widen_factor))
)
```
#### 不使用预训练权重
通常情况下,骨干网络初始化都是优先选择预训练权重。如果你不想使用预训练权重,而是想从头开始训练时模型时,
我们可以将 `backbone` 中的 `init_cfg` 设置为 `None`,此时骨干网络将会以默认的初始化方法进行初始化,
而不会使用训练好的预训练权重进行初始。以下是以 `YOLOv5` 使用 resnet 作为主干网络为例子,其余算法也是同样的处理:
```python
_base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'
deepen_factor = _base_.deepen_factor
widen_factor = 1.0
channels = [512, 1024, 2048]
model = dict(
backbone=dict(
_delete_=True, # 将 _base_ 中关于 backbone 的字段删除
type='mmdet.ResNet', # 使用 mmdet 中的 ResNet
depth=50,
num_stages=4,
out_indices=(1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=None # init_cfg 设置为 None,则 backbone 将不会使用预训练好的权重进行初始化了
),
neck=dict(
type='YOLOv5PAFPN',
widen_factor=widen_factor,
in_channels=channels, # 注意:ResNet-50 输出的 3 个通道是 [512, 1024, 2048],和原先的 yolov5-s neck 不匹配,需要更改
out_channels=channels),
bbox_head=dict(
type='YOLOv5Head',
head_module=dict(
type='YOLOv5HeadModule',
in_channels=channels, # head 部分输入通道也要做相应更改
widen_factor=widen_factor))
)
```
#### 冻结 backbone 或 neck 的权重
在 MMYOLO 中我们可以通过设置 `frozen_stages` 参数去冻结主干网络的部分 `stage`, 使这些 `stage` 的参数不参与模型的更新。
需要注意的是:`frozen_stages = i` 表示的意思是指从最开始的 `stage` 开始到第 `i` 层 `stage` 的所有参数都会被冻结。下面是 `YOLOv5` 的例子,其他算法也是同样的逻辑:
```python
_base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'
model = dict(
backbone=dict(
frozen_stages=1 # 表示第一层 stage 以及它之前的所有 stage 中的参数都会被冻结
))
```
此外, MMYOLO 中也可以通过参数 `freeze_all` 去冻结整个 `neck` 的参数。下面是 `YOLOv5` 的例子,其他算法也是同样的逻辑:
```python
_base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'
model = dict(
neck=dict(
freeze_all=True # freeze_all=True 时表示整个 neck 的参数都会被冻结
))
```
## 输出预测结果
如果想将预测结果保存为特定的文件,用于离线评估,目前 MMYOLO 支持 json 和 pkl 两种格式。
```{note}
json 文件仅保存 `image_id`、`bbox`、`score` 和 `category_id`; json 文件可以使用 json 库读取。
pkl 保存内容比 json 文件更多,还会保存预测图片的文件名和尺寸等一系列信息; pkl 文件可以使用 pickle 库读取。
```
### 输出为 json 文件
如果想将预测结果输出为 json 文件,则命令如下:
```shell
python tools/test.py ${CONFIG} ${CHECKPOINT} --json-prefix ${JSON_PREFIX}
```
`--json-prefix` 后的参数输入为文件名前缀(无需输入 `.json` 后缀),也可以包含路径。举一个具体例子:
```shell
python tools/test.py configs\yolov5\yolov5_s-v61_syncbn_8xb16-300e_coco.py yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth --json-prefix work_dirs/demo/json_demo
```
运行以上命令会在 `work_dirs/demo` 文件夹下,输出 `json_demo.bbox.json` 文件。
### 输出为 pkl 文件
如果想将预测结果输出为 pkl 文件,则命令如下:
```shell
python tools/test.py ${CONFIG} ${CHECKPOINT} --out ${OUTPUT_FILE} [--cfg-options ${OPTIONS [OPTIONS...]}]
```
`--out` 后的参数输入为完整文件名(**必须输入** `.pkl` 或 `.pickle` 后缀),也可以包含路径。举一个具体例子:
```shell
python tools/test.py configs\yolov5\yolov5_s-v61_syncbn_8xb16-300e_coco.py yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth --out work_dirs/demo/pkl_demo.pkl
```
运行以上命令会在 `work_dirs/demo` 文件夹下,输出 `pkl_demo.pkl` 文件。
## 使用 mim 跨库调用其他 OpenMMLab 仓库的脚本
```{note}
1. 目前暂不支持跨库调用所有脚本,正在修复中。等修复完成,本文档会添加更多的例子。
2. 绘制 mAP 和 计算平均训练速度 两项功能在 MMDetection dev-3.x 分支中修复,目前需要通过源码安装该分支才能成功调用。
```
### 日志分析
#### 曲线图绘制
MMDetection 中的 `tools/analysis_tools/analyze_logs.py` 可利用指定的训练 log 文件绘制 loss/mAP 曲线图, 第一次运行前请先运行 `pip install seaborn` 安装必要依赖。
```shell
mim run mmdet analyze_logs plot_curve \
${LOG} \ # 日志文件路径
[--keys ${KEYS}] \ # 需要绘制的指标,默认为 'bbox_mAP'
[--start-epoch ${START_EPOCH}] # 起始的 epoch,默认为 1
[--eval-interval ${EVALUATION_INTERVAL}] \ # 评估间隔,默认为 1
[--title ${TITLE}] \ # 图片标题,无默认值
[--legend ${LEGEND}] \ # 图例,默认为 None
[--backend ${BACKEND}] \ # 绘制后端,默认为 None
[--style ${STYLE}] \ # 绘制风格,默认为 'dark'
[--out ${OUT_FILE}] # 输出文件路径
# [] 代表可选参数,实际输入命令行时,不用输入 []
```
样例:
- 绘制分类损失曲线图
```shell
mim run mmdet analyze_logs plot_curve \
yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700.log.json \
--keys loss_cls \
--legend loss_cls
```
- 绘制分类损失、回归损失曲线图,保存图片为对应的 pdf 文件
```shell
mim run mmdet analyze_logs plot_curve \
yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700.log.json \
--keys loss_cls loss_bbox \
--legend loss_cls loss_bbox \
--out losses_yolov5_s.pdf
```
- 在同一图像中比较两次运行结果的 bbox mAP
```shell
mim run mmdet analyze_logs plot_curve \
yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700.log.json \
yolov5_n-v61_syncbn_fast_8xb16-300e_coco_20220919_090739.log.json \
--keys bbox_mAP \
--legend yolov5_s yolov5_n \
--eval-interval 10 # 注意评估间隔必须和训练时设置的一致,否则会报错
```
#### 计算平均训练速度
```shell
mim run mmdet analyze_logs cal_train_time \
${LOG} \ # 日志文件路径
[--include-outliers] # 计算时包含每个 epoch 的第一个数据
```
样例:
```shell
mim run mmdet analyze_logs cal_train_time \
yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700.log.json
```
输出以如下形式展示:
```text
-----Analyze train time of yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700.log.json-----
slowest epoch 278, average time is 0.1705 s/iter
fastest epoch 300, average time is 0.1510 s/iter
time std over epochs is 0.0026
average iter time: 0.1556 s/iter
```
### 打印完整配置文件
MMDetection 中的 `tools/misc/print_config.py` 脚本可将所有配置继承关系展开,打印相应的完整配置文件。调用命令如下:
```shell
mim run mmdet print_config \
${CONFIG} \ # 需要打印的配置文件路径
[--save-path] \ # 保存文件路径,必须以 .py, .json 或者 .yml 结尾
[--cfg-options ${OPTIONS [OPTIONS...]}] # 通过命令行参数修改配置文件
```
样例:
```shell
mim run mmdet print_config \
configs/yolov5/yolov5_s-v61_syncbn_fast_1xb4-300e_balloon.py \
--save-path ./work_dirs/yolov5_s-v61_syncbn_fast_1xb4-300e_balloon_whole.py
```
运行以上命令,会将 `yolov5_s-v61_syncbn_fast_1xb4-300e_balloon.py` 继承关系展开后的配置文件保存到 `./work_dirs` 文件夹内的 `yolov5_s-v61_syncbn_fast_1xb4-300e_balloon_whole.py` 文件中。
## 设置随机种子
如果想要在训练时指定随机种子,可以使用以下命令:
```shell
python ./tools/train.py \
${CONFIG} \ # 配置文件路径
--cfg-options randomness.seed=2023 \ # 设置随机种子为 2023
[randomness.diff_rank_seed=True] \ # 根据 rank 来设置不同的种子。
[randomness.deterministic=True] # 把 cuDNN 后端确定性选项设置为 True
# [] 代表可选参数,实际输入命令行时,不用输入 []
```
`randomness` 有三个参数可设置,具体含义如下:
- `randomness.seed=2023` ,设置随机种子为 2023。
- `randomness.diff_rank_seed=True`,根据 rank 来设置不同的种子,`diff_rank_seed` 默认为 False。
- `randomness.deterministic=True`,把 cuDNN 后端确定性选项设置为 True,即把`torch.backends.cudnn.deterministic` 设为 True,把 `torch.backends.cudnn.benchmark` 设为False。`deterministic` 默认为 False。更多细节见 https://pytorch.org/docs/stable/notes/randomness.html。