# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import pytest import torch from torch.nn.modules.batchnorm import _BatchNorm from mmyolo.models.backbones import YOLOv7Backbone from mmyolo.utils import register_all_modules from .utils import check_norm_state register_all_modules() class TestYOLOv7Backbone(TestCase): def test_init(self): # out_indices in range(len(arch_setting) + 1) with pytest.raises(AssertionError): YOLOv7Backbone(out_indices=(6, )) with pytest.raises(ValueError): # frozen_stages must in range(-1, len(arch_setting) + 1) YOLOv7Backbone(frozen_stages=6) def test_forward(self): # Test YOLOv7Backbone-L with first stage frozen frozen_stages = 1 model = YOLOv7Backbone(frozen_stages=frozen_stages) model.init_weights() model.train() for mod in model.stem.modules(): for param in mod.parameters(): assert param.requires_grad is False for i in range(1, frozen_stages + 1): layer = getattr(model, f'stage{i}') for mod in layer.modules(): if isinstance(mod, _BatchNorm): assert mod.training is False for param in layer.parameters(): assert param.requires_grad is False # Test YOLOv7Backbone-L with norm_eval=True model = YOLOv7Backbone(norm_eval=True) model.train() assert check_norm_state(model.modules(), False) # Test YOLOv7Backbone-L forward with widen_factor=0.25 model = YOLOv7Backbone( widen_factor=0.25, out_indices=tuple(range(0, 5))) model.train() imgs = torch.randn(1, 3, 64, 64) feat = model(imgs) assert len(feat) == 5 assert feat[0].shape == torch.Size((1, 16, 32, 32)) assert feat[1].shape == torch.Size((1, 64, 16, 16)) assert feat[2].shape == torch.Size((1, 128, 8, 8)) assert feat[3].shape == torch.Size((1, 256, 4, 4)) assert feat[4].shape == torch.Size((1, 256, 2, 2)) # Test YOLOv7Backbone-L with plugins model = YOLOv7Backbone( widen_factor=0.25, plugins=[ dict( cfg=dict( type='mmdet.DropBlock', drop_prob=0.1, block_size=3), stages=(False, False, True, True)), ]) assert len(model.stage1) == 2 assert len(model.stage2) == 2 assert len(model.stage3) == 3 # +DropBlock assert len(model.stage4) == 3 # +DropBlock model.train() imgs = torch.randn(1, 3, 128, 128) feat = model(imgs) assert len(feat) == 3 assert feat[0].shape == torch.Size((1, 128, 16, 16)) assert feat[1].shape == torch.Size((1, 256, 8, 8)) assert feat[2].shape == torch.Size((1, 256, 4, 4)) # Test YOLOv7Backbone-X forward with widen_factor=0.25 model = YOLOv7Backbone(arch='X', widen_factor=0.25) model.train() imgs = torch.randn(1, 3, 64, 64) feat = model(imgs) assert len(feat) == 3 assert feat[0].shape == torch.Size((1, 160, 8, 8)) assert feat[1].shape == torch.Size((1, 320, 4, 4)) assert feat[2].shape == torch.Size((1, 320, 2, 2)) # Test YOLOv7Backbone-tiny forward with widen_factor=0.25 model = YOLOv7Backbone(arch='Tiny', widen_factor=0.25) model.train() feat = model(imgs) assert len(feat) == 3 assert feat[0].shape == torch.Size((1, 32, 8, 8)) assert feat[1].shape == torch.Size((1, 64, 4, 4)) assert feat[2].shape == torch.Size((1, 128, 2, 2)) # Test YOLOv7Backbone-w forward with widen_factor=0.25 model = YOLOv7Backbone( arch='W', widen_factor=0.25, out_indices=(2, 3, 4, 5)) model.train() imgs = torch.randn(1, 3, 128, 128) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size((1, 64, 16, 16)) assert feat[1].shape == torch.Size((1, 128, 8, 8)) assert feat[2].shape == torch.Size((1, 192, 4, 4)) assert feat[3].shape == torch.Size((1, 256, 2, 2)) # Test YOLOv7Backbone-w forward with widen_factor=0.25 model = YOLOv7Backbone( arch='D', widen_factor=0.25, out_indices=(2, 3, 4, 5)) model.train() feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size((1, 96, 16, 16)) assert feat[1].shape == torch.Size((1, 192, 8, 8)) assert feat[2].shape == torch.Size((1, 288, 4, 4)) assert feat[3].shape == torch.Size((1, 384, 2, 2)) # Test YOLOv7Backbone-w forward with widen_factor=0.25 model = YOLOv7Backbone( arch='E', widen_factor=0.25, out_indices=(2, 3, 4, 5)) model.train() feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size((1, 80, 16, 16)) assert feat[1].shape == torch.Size((1, 160, 8, 8)) assert feat[2].shape == torch.Size((1, 240, 4, 4)) assert feat[3].shape == torch.Size((1, 320, 2, 2)) # Test YOLOv7Backbone-w forward with widen_factor=0.25 model = YOLOv7Backbone( arch='E2E', widen_factor=0.25, out_indices=(2, 3, 4, 5)) model.train() feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size((1, 80, 16, 16)) assert feat[1].shape == torch.Size((1, 160, 8, 8)) assert feat[2].shape == torch.Size((1, 240, 4, 4)) assert feat[3].shape == torch.Size((1, 320, 2, 2))