_base_ = './yolov8_s_syncbn_fast_8xb16-500e_coco.py' deepen_factor = 0.67 widen_factor = 0.75 last_stage_out_channels = 768 affine_scale = 0.9 mixup_ratio = 0.1 num_classes = _base_.num_classes num_det_layers = _base_.num_det_layers img_scale = _base_.img_scale model = dict( backbone=dict( last_stage_out_channels=last_stage_out_channels, deepen_factor=deepen_factor, widen_factor=widen_factor), neck=dict( deepen_factor=deepen_factor, widen_factor=widen_factor, in_channels=[256, 512, last_stage_out_channels], out_channels=[256, 512, last_stage_out_channels]), bbox_head=dict( head_module=dict( widen_factor=widen_factor, in_channels=[256, 512, last_stage_out_channels]))) pre_transform = _base_.pre_transform albu_train_transform = _base_.albu_train_transform last_transform = _base_.last_transform mosaic_affine_transform = [ dict( type='Mosaic', img_scale=img_scale, pad_val=114.0, pre_transform=pre_transform), dict( type='YOLOv5RandomAffine', max_rotate_degree=0.0, max_shear_degree=0.0, max_aspect_ratio=100, scaling_ratio_range=(1 - affine_scale, 1 + affine_scale), # img_scale is (width, height) border=(-img_scale[0] // 2, -img_scale[1] // 2), border_val=(114, 114, 114)) ] train_pipeline = [ *pre_transform, *mosaic_affine_transform, dict( type='YOLOv5MixUp', prob=mixup_ratio, pre_transform=[*pre_transform, *mosaic_affine_transform]), *last_transform ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) train_pipeline_stage2 = [ *pre_transform, dict(type='YOLOv5KeepRatioResize', scale=img_scale), dict( type='LetterResize', scale=img_scale, allow_scale_up=True, pad_val=dict(img=114.0)), dict( type='YOLOv5RandomAffine', max_rotate_degree=0.0, max_shear_degree=0.0, scaling_ratio_range=(1 - affine_scale, 1 + affine_scale), max_aspect_ratio=100, border_val=(114, 114, 114)), *last_transform ] custom_hooks = [ dict( type='EMAHook', ema_type='ExpMomentumEMA', momentum=0.0001, update_buffers=True, strict_load=False, priority=49), dict( type='mmdet.PipelineSwitchHook', switch_epoch=_base_.max_epochs - 10, switch_pipeline=train_pipeline_stage2) ]