mirror of https://github.com/open-mmlab/mmyolo.git
139 lines
4.7 KiB
Python
139 lines
4.7 KiB
Python
_base_ = 'yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py'
|
|
|
|
# ========================modified parameters======================
|
|
img_scale = (1280, 1280) # width, height
|
|
num_classes = 80 # Number of classes for classification
|
|
# Config of batch shapes. Only on val.
|
|
# It means not used if batch_shapes_cfg is None.
|
|
batch_shapes_cfg = dict(
|
|
img_size=img_scale[0],
|
|
# The image scale of padding should be divided by pad_size_divisor
|
|
size_divisor=64)
|
|
# Basic size of multi-scale prior box
|
|
anchors = [
|
|
[(19, 27), (44, 40), (38, 94)], # P3/8
|
|
[(96, 68), (86, 152), (180, 137)], # P4/16
|
|
[(140, 301), (303, 264), (238, 542)], # P5/32
|
|
[(436, 615), (739, 380), (925, 792)] # P6/64
|
|
]
|
|
# Strides of multi-scale prior box
|
|
strides = [8, 16, 32, 64]
|
|
num_det_layers = 4 # The number of model output scales
|
|
loss_cls_weight = 0.5
|
|
loss_bbox_weight = 0.05
|
|
loss_obj_weight = 1.0
|
|
# The obj loss weights of the three output layers
|
|
obj_level_weights = [4.0, 1.0, 0.25, 0.06]
|
|
affine_scale = 0.5 # YOLOv5RandomAffine scaling ratio
|
|
|
|
tta_img_scales = [(1280, 1280), (1024, 1024), (1536, 1536)]
|
|
# =======================Unmodified in most cases==================
|
|
model = dict(
|
|
backbone=dict(arch='P6', out_indices=(2, 3, 4, 5)),
|
|
neck=dict(
|
|
in_channels=[256, 512, 768, 1024], out_channels=[256, 512, 768, 1024]),
|
|
bbox_head=dict(
|
|
head_module=dict(
|
|
in_channels=[256, 512, 768, 1024], featmap_strides=strides),
|
|
prior_generator=dict(base_sizes=anchors, strides=strides),
|
|
# scaled based on number of detection layers
|
|
loss_cls=dict(loss_weight=loss_cls_weight *
|
|
(num_classes / 80 * 3 / num_det_layers)),
|
|
loss_bbox=dict(loss_weight=loss_bbox_weight * (3 / num_det_layers)),
|
|
loss_obj=dict(loss_weight=loss_obj_weight *
|
|
((img_scale[0] / 640)**2 * 3 / num_det_layers)),
|
|
obj_level_weights=obj_level_weights))
|
|
|
|
pre_transform = _base_.pre_transform
|
|
albu_train_transforms = _base_.albu_train_transforms
|
|
|
|
train_pipeline = [
|
|
*pre_transform,
|
|
dict(
|
|
type='Mosaic',
|
|
img_scale=img_scale,
|
|
pad_val=114.0,
|
|
pre_transform=pre_transform),
|
|
dict(
|
|
type='YOLOv5RandomAffine',
|
|
max_rotate_degree=0.0,
|
|
max_shear_degree=0.0,
|
|
scaling_ratio_range=(1 - affine_scale, 1 + affine_scale),
|
|
# img_scale is (width, height)
|
|
border=(-img_scale[0] // 2, -img_scale[1] // 2),
|
|
border_val=(114, 114, 114)),
|
|
dict(
|
|
type='mmdet.Albu',
|
|
transforms=albu_train_transforms,
|
|
bbox_params=dict(
|
|
type='BboxParams',
|
|
format='pascal_voc',
|
|
label_fields=['gt_bboxes_labels', 'gt_ignore_flags']),
|
|
keymap={
|
|
'img': 'image',
|
|
'gt_bboxes': 'bboxes'
|
|
}),
|
|
dict(type='YOLOv5HSVRandomAug'),
|
|
dict(type='mmdet.RandomFlip', prob=0.5),
|
|
dict(
|
|
type='mmdet.PackDetInputs',
|
|
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
|
|
'flip_direction'))
|
|
]
|
|
|
|
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
|
|
|
test_pipeline = [
|
|
dict(type='LoadImageFromFile', backend_args=_base_.backend_args),
|
|
dict(type='YOLOv5KeepRatioResize', scale=img_scale),
|
|
dict(
|
|
type='LetterResize',
|
|
scale=img_scale,
|
|
allow_scale_up=False,
|
|
pad_val=dict(img=114)),
|
|
dict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'),
|
|
dict(
|
|
type='mmdet.PackDetInputs',
|
|
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
|
'scale_factor', 'pad_param'))
|
|
]
|
|
|
|
val_dataloader = dict(
|
|
dataset=dict(pipeline=test_pipeline, batch_shapes_cfg=batch_shapes_cfg))
|
|
|
|
test_dataloader = val_dataloader
|
|
|
|
# Config for Test Time Augmentation. (TTA)
|
|
_multiscale_resize_transforms = [
|
|
dict(
|
|
type='Compose',
|
|
transforms=[
|
|
dict(type='YOLOv5KeepRatioResize', scale=s),
|
|
dict(
|
|
type='LetterResize',
|
|
scale=s,
|
|
allow_scale_up=False,
|
|
pad_val=dict(img=114))
|
|
]) for s in tta_img_scales
|
|
]
|
|
|
|
tta_pipeline = [
|
|
dict(type='LoadImageFromFile', backend_args=_base_.backend_args),
|
|
dict(
|
|
type='TestTimeAug',
|
|
transforms=[
|
|
_multiscale_resize_transforms,
|
|
[
|
|
dict(type='mmdet.RandomFlip', prob=1.),
|
|
dict(type='mmdet.RandomFlip', prob=0.)
|
|
], [dict(type='mmdet.LoadAnnotations', with_bbox=True)],
|
|
[
|
|
dict(
|
|
type='mmdet.PackDetInputs',
|
|
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
|
'scale_factor', 'pad_param', 'flip',
|
|
'flip_direction'))
|
|
]
|
|
])
|
|
]
|