mirror of https://github.com/open-mmlab/mmyolo.git
200 lines
6.4 KiB
Python
200 lines
6.4 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import argparse
|
|
import os
|
|
from typing import Sequence
|
|
|
|
import mmcv
|
|
from mmdet.apis import inference_detector, init_detector
|
|
from mmengine import Config, DictAction
|
|
from mmengine.registry import init_default_scope
|
|
from mmengine.utils import ProgressBar
|
|
|
|
from mmyolo.registry import VISUALIZERS
|
|
from mmyolo.utils.misc import auto_arrange_images, get_file_list
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description='Visualize feature map')
|
|
parser.add_argument(
|
|
'img', help='Image path, include image file, dir and URL.')
|
|
parser.add_argument('config', help='Config file')
|
|
parser.add_argument('checkpoint', help='Checkpoint file')
|
|
parser.add_argument(
|
|
'--out-dir', default='./output', help='Path to output file')
|
|
parser.add_argument(
|
|
'--target-layers',
|
|
default=['backbone'],
|
|
nargs='+',
|
|
type=str,
|
|
help='The target layers to get feature map, if not set, the tool will '
|
|
'specify the backbone')
|
|
parser.add_argument(
|
|
'--preview-model',
|
|
default=False,
|
|
action='store_true',
|
|
help='To preview all the model layers')
|
|
parser.add_argument(
|
|
'--device', default='cuda:0', help='Device used for inference')
|
|
parser.add_argument(
|
|
'--score-thr', type=float, default=0.3, help='Bbox score threshold')
|
|
parser.add_argument(
|
|
'--show', action='store_true', help='Show the featmap results')
|
|
parser.add_argument(
|
|
'--channel-reduction',
|
|
default='select_max',
|
|
help='Reduce multiple channels to a single channel')
|
|
parser.add_argument(
|
|
'--topk',
|
|
type=int,
|
|
default=4,
|
|
help='Select topk channel to show by the sum of each channel')
|
|
parser.add_argument(
|
|
'--arrangement',
|
|
nargs='+',
|
|
type=int,
|
|
default=[2, 2],
|
|
help='The arrangement of featmap when channel_reduction is '
|
|
'not None and topk > 0')
|
|
parser.add_argument(
|
|
'--cfg-options',
|
|
nargs='+',
|
|
action=DictAction,
|
|
help='override some settings in the used config, the key-value pair '
|
|
'in xxx=yyy format will be merged into config file. If the value to '
|
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
|
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
|
|
'Note that the quotation marks are necessary and that no white space '
|
|
'is allowed.')
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
class ActivationsWrapper:
|
|
|
|
def __init__(self, model, target_layers):
|
|
self.model = model
|
|
self.activations = []
|
|
self.handles = []
|
|
self.image = None
|
|
for target_layer in target_layers:
|
|
self.handles.append(
|
|
target_layer.register_forward_hook(self.save_activation))
|
|
|
|
def save_activation(self, module, input, output):
|
|
self.activations.append(output)
|
|
|
|
def __call__(self, img_path):
|
|
self.activations = []
|
|
results = inference_detector(self.model, img_path)
|
|
return results, self.activations
|
|
|
|
def release(self):
|
|
for handle in self.handles:
|
|
handle.remove()
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
|
|
cfg = Config.fromfile(args.config)
|
|
if args.cfg_options is not None:
|
|
cfg.merge_from_dict(args.cfg_options)
|
|
|
|
init_default_scope(cfg.get('default_scope', 'mmyolo'))
|
|
|
|
channel_reduction = args.channel_reduction
|
|
if channel_reduction == 'None':
|
|
channel_reduction = None
|
|
assert len(args.arrangement) == 2
|
|
|
|
model = init_detector(args.config, args.checkpoint, device=args.device)
|
|
|
|
if not os.path.exists(args.out_dir) and not args.show:
|
|
os.mkdir(args.out_dir)
|
|
|
|
if args.preview_model:
|
|
print(model)
|
|
print('\n This flag is only show model, if you want to continue, '
|
|
'please remove `--preview-model` to get the feature map.')
|
|
return
|
|
|
|
target_layers = []
|
|
for target_layer in args.target_layers:
|
|
try:
|
|
target_layers.append(eval(f'model.{target_layer}'))
|
|
except Exception as e:
|
|
print(model)
|
|
raise RuntimeError('layer does not exist', e)
|
|
|
|
activations_wrapper = ActivationsWrapper(model, target_layers)
|
|
|
|
# init visualizer
|
|
visualizer = VISUALIZERS.build(model.cfg.visualizer)
|
|
visualizer.dataset_meta = model.dataset_meta
|
|
|
|
# get file list
|
|
image_list, source_type = get_file_list(args.img)
|
|
|
|
progress_bar = ProgressBar(len(image_list))
|
|
for image_path in image_list:
|
|
result, featmaps = activations_wrapper(image_path)
|
|
if not isinstance(featmaps, Sequence):
|
|
featmaps = [featmaps]
|
|
|
|
flatten_featmaps = []
|
|
for featmap in featmaps:
|
|
if isinstance(featmap, Sequence):
|
|
flatten_featmaps.extend(featmap)
|
|
else:
|
|
flatten_featmaps.append(featmap)
|
|
|
|
img = mmcv.imread(image_path)
|
|
img = mmcv.imconvert(img, 'bgr', 'rgb')
|
|
|
|
if source_type['is_dir']:
|
|
filename = os.path.relpath(image_path, args.img).replace('/', '_')
|
|
else:
|
|
filename = os.path.basename(image_path)
|
|
out_file = None if args.show else os.path.join(args.out_dir, filename)
|
|
|
|
# show the results
|
|
shown_imgs = []
|
|
visualizer.add_datasample(
|
|
'result',
|
|
img,
|
|
data_sample=result,
|
|
draw_gt=False,
|
|
show=False,
|
|
wait_time=0,
|
|
out_file=None,
|
|
pred_score_thr=args.score_thr)
|
|
drawn_img = visualizer.get_image()
|
|
|
|
for featmap in flatten_featmaps:
|
|
shown_img = visualizer.draw_featmap(
|
|
featmap[0],
|
|
drawn_img,
|
|
channel_reduction=channel_reduction,
|
|
topk=args.topk,
|
|
arrangement=args.arrangement)
|
|
shown_imgs.append(shown_img)
|
|
|
|
shown_imgs = auto_arrange_images(shown_imgs)
|
|
|
|
progress_bar.update()
|
|
if out_file:
|
|
mmcv.imwrite(shown_imgs[..., ::-1], out_file)
|
|
|
|
if args.show:
|
|
visualizer.show(shown_imgs)
|
|
|
|
if not args.show:
|
|
print(f'All done!'
|
|
f'\nResults have been saved at {os.path.abspath(args.out_dir)}')
|
|
|
|
|
|
# Please refer to the usage tutorial:
|
|
# https://github.com/open-mmlab/mmyolo/blob/main/docs/zh_cn/user_guides/visualization.md # noqa
|
|
if __name__ == '__main__':
|
|
main()
|