mmyolo/configs/ppyoloe/ppyoloe_plus_s_fast_8xb8-80...

115 lines
3.3 KiB
Python

_base_ = '../_base_/default_runtime.py'
# dataset settings
data_root = 'data/coco/'
dataset_type = 'YOLOv5CocoDataset'
# parameters that often need to be modified
img_scale = (640, 640) # height, width
deepen_factor = 0.33
widen_factor = 0.5
max_epochs = 80
save_epoch_intervals = 10
train_batch_size_per_gpu = 8
train_num_workers = 8
val_batch_size_per_gpu = 1
val_num_workers = 2
# persistent_workers must be False if num_workers is 0.
persistent_workers = True
strides = [8, 16, 32]
model = dict(
type='YOLODetector',
data_preprocessor=dict(
type='YOLOv5DetDataPreprocessor',
mean=[0., 0., 0.],
std=[255., 255., 255.],
bgr_to_rgb=True),
backbone=dict(
type='PPYOLOECSPResNet',
deepen_factor=deepen_factor,
widen_factor=widen_factor,
block_cfg=dict(
type='PPYOLOEBasicBlock', shortcut=True, use_alpha=True),
norm_cfg=dict(type='BN', momentum=0.1, eps=1e-5),
act_cfg=dict(type='SiLU', inplace=True),
attention_cfg=dict(
type='EffectiveSELayer', act_cfg=dict(type='HSigmoid')),
use_large_stem=True),
neck=dict(
type='PPYOLOECSPPAFPN',
in_channels=[256, 512, 1024],
out_channels=[192, 384, 768],
deepen_factor=deepen_factor,
widen_factor=widen_factor,
num_csplayer=1,
num_blocks_per_layer=3,
block_cfg=dict(
type='PPYOLOEBasicBlock', shortcut=False, use_alpha=False),
norm_cfg=dict(type='BN', momentum=0.1, eps=1e-5),
act_cfg=dict(type='SiLU', inplace=True),
drop_block_cfg=None,
use_spp=True),
bbox_head=dict(
type='PPYOLOEHead',
head_module=dict(
type='PPYOLOEHeadModule',
num_classes=80,
in_channels=[192, 384, 768],
widen_factor=widen_factor,
featmap_strides=strides,
num_base_priors=1)),
test_cfg=dict(
multi_label=True,
nms_pre=1000,
score_thr=0.01,
nms=dict(type='nms', iou_threshold=0.7),
max_per_img=300))
test_pipeline = [
dict(
type='LoadImageFromFile',
file_client_args={{_base_.file_client_args}}),
dict(
type='mmdet.FixShapeResize',
width=img_scale[1],
height=img_scale[0],
keep_ratio=False,
interpolation='bicubic'),
dict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'),
dict(
type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor'))
]
val_dataloader = dict(
batch_size=val_batch_size_per_gpu,
num_workers=val_num_workers,
persistent_workers=persistent_workers,
pin_memory=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
test_mode=True,
data_prefix=dict(img='val2017/'),
filter_cfg=dict(filter_empty_gt=True, min_size=0),
ann_file='annotations/instances_val2017.json',
pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = dict(
type='mmdet.CocoMetric',
proposal_nums=(100, 1, 10),
ann_file=data_root + 'annotations/instances_val2017.json',
metric='bbox')
test_evaluator = val_evaluator
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')