mirror of https://github.com/open-mmlab/mmyolo.git
115 lines
3.3 KiB
Python
115 lines
3.3 KiB
Python
_base_ = '../_base_/default_runtime.py'
|
|
|
|
# dataset settings
|
|
data_root = 'data/coco/'
|
|
dataset_type = 'YOLOv5CocoDataset'
|
|
|
|
# parameters that often need to be modified
|
|
img_scale = (640, 640) # height, width
|
|
deepen_factor = 0.33
|
|
widen_factor = 0.5
|
|
max_epochs = 80
|
|
save_epoch_intervals = 10
|
|
train_batch_size_per_gpu = 8
|
|
train_num_workers = 8
|
|
val_batch_size_per_gpu = 1
|
|
val_num_workers = 2
|
|
|
|
# persistent_workers must be False if num_workers is 0.
|
|
persistent_workers = True
|
|
|
|
strides = [8, 16, 32]
|
|
|
|
model = dict(
|
|
type='YOLODetector',
|
|
data_preprocessor=dict(
|
|
type='YOLOv5DetDataPreprocessor',
|
|
mean=[0., 0., 0.],
|
|
std=[255., 255., 255.],
|
|
bgr_to_rgb=True),
|
|
backbone=dict(
|
|
type='PPYOLOECSPResNet',
|
|
deepen_factor=deepen_factor,
|
|
widen_factor=widen_factor,
|
|
block_cfg=dict(
|
|
type='PPYOLOEBasicBlock', shortcut=True, use_alpha=True),
|
|
norm_cfg=dict(type='BN', momentum=0.1, eps=1e-5),
|
|
act_cfg=dict(type='SiLU', inplace=True),
|
|
attention_cfg=dict(
|
|
type='EffectiveSELayer', act_cfg=dict(type='HSigmoid')),
|
|
use_large_stem=True),
|
|
neck=dict(
|
|
type='PPYOLOECSPPAFPN',
|
|
in_channels=[256, 512, 1024],
|
|
out_channels=[192, 384, 768],
|
|
deepen_factor=deepen_factor,
|
|
widen_factor=widen_factor,
|
|
num_csplayer=1,
|
|
num_blocks_per_layer=3,
|
|
block_cfg=dict(
|
|
type='PPYOLOEBasicBlock', shortcut=False, use_alpha=False),
|
|
norm_cfg=dict(type='BN', momentum=0.1, eps=1e-5),
|
|
act_cfg=dict(type='SiLU', inplace=True),
|
|
drop_block_cfg=None,
|
|
use_spp=True),
|
|
bbox_head=dict(
|
|
type='PPYOLOEHead',
|
|
head_module=dict(
|
|
type='PPYOLOEHeadModule',
|
|
num_classes=80,
|
|
in_channels=[192, 384, 768],
|
|
widen_factor=widen_factor,
|
|
featmap_strides=strides,
|
|
num_base_priors=1)),
|
|
test_cfg=dict(
|
|
multi_label=True,
|
|
nms_pre=1000,
|
|
score_thr=0.01,
|
|
nms=dict(type='nms', iou_threshold=0.7),
|
|
max_per_img=300))
|
|
|
|
test_pipeline = [
|
|
dict(
|
|
type='LoadImageFromFile',
|
|
file_client_args={{_base_.file_client_args}}),
|
|
dict(
|
|
type='mmdet.FixShapeResize',
|
|
width=img_scale[1],
|
|
height=img_scale[0],
|
|
keep_ratio=False,
|
|
interpolation='bicubic'),
|
|
dict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'),
|
|
dict(
|
|
type='mmdet.PackDetInputs',
|
|
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
|
'scale_factor'))
|
|
]
|
|
|
|
val_dataloader = dict(
|
|
batch_size=val_batch_size_per_gpu,
|
|
num_workers=val_num_workers,
|
|
persistent_workers=persistent_workers,
|
|
pin_memory=True,
|
|
drop_last=False,
|
|
sampler=dict(type='DefaultSampler', shuffle=False),
|
|
dataset=dict(
|
|
type=dataset_type,
|
|
data_root=data_root,
|
|
test_mode=True,
|
|
data_prefix=dict(img='val2017/'),
|
|
filter_cfg=dict(filter_empty_gt=True, min_size=0),
|
|
ann_file='annotations/instances_val2017.json',
|
|
pipeline=test_pipeline))
|
|
|
|
test_dataloader = val_dataloader
|
|
|
|
val_evaluator = dict(
|
|
type='mmdet.CocoMetric',
|
|
proposal_nums=(100, 1, 10),
|
|
ann_file=data_root + 'annotations/instances_val2017.json',
|
|
metric='bbox')
|
|
test_evaluator = val_evaluator
|
|
|
|
val_cfg = dict(type='ValLoop')
|
|
test_cfg = dict(type='TestLoop')
|