mirror of https://github.com/open-mmlab/mmyolo.git
80 lines
2.8 KiB
Python
80 lines
2.8 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch import Tensor
|
|
|
|
|
|
class DeployFocus(nn.Module):
|
|
|
|
def __init__(self, orin_Focus: nn.Module):
|
|
super().__init__()
|
|
self.__dict__.update(orin_Focus.__dict__)
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
batch_size, channel, height, width = x.shape
|
|
x = x.reshape(batch_size, channel, -1, 2, width)
|
|
x = x.reshape(batch_size, channel, x.shape[2], 2, -1, 2)
|
|
half_h = x.shape[2]
|
|
half_w = x.shape[4]
|
|
x = x.permute(0, 5, 3, 1, 2, 4)
|
|
x = x.reshape(batch_size, channel * 4, half_h, half_w)
|
|
|
|
return self.conv(x)
|
|
|
|
|
|
class NcnnFocus(nn.Module):
|
|
|
|
def __init__(self, orin_Focus: nn.Module):
|
|
super().__init__()
|
|
self.__dict__.update(orin_Focus.__dict__)
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
batch_size, c, h, w = x.shape
|
|
assert h % 2 == 0 and w % 2 == 0, f'focus for yolox needs even feature\
|
|
height and width, got {(h, w)}.'
|
|
|
|
x = x.reshape(batch_size, c * h, 1, w)
|
|
_b, _c, _h, _w = x.shape
|
|
g = _c // 2
|
|
# fuse to ncnn's shufflechannel
|
|
x = x.view(_b, g, 2, _h, _w)
|
|
x = torch.transpose(x, 1, 2).contiguous()
|
|
x = x.view(_b, -1, _h, _w)
|
|
|
|
x = x.reshape(_b, c * h * w, 1, 1)
|
|
|
|
_b, _c, _h, _w = x.shape
|
|
g = _c // 2
|
|
# fuse to ncnn's shufflechannel
|
|
x = x.view(_b, g, 2, _h, _w)
|
|
x = torch.transpose(x, 1, 2).contiguous()
|
|
x = x.view(_b, -1, _h, _w)
|
|
|
|
x = x.reshape(_b, c * 4, h // 2, w // 2)
|
|
|
|
return self.conv(x)
|
|
|
|
|
|
class GConvFocus(nn.Module):
|
|
|
|
def __init__(self, orin_Focus: nn.Module):
|
|
super().__init__()
|
|
device = next(orin_Focus.parameters()).device
|
|
self.weight1 = torch.tensor([[1., 0], [0, 0]]).expand(3, 1, 2,
|
|
2).to(device)
|
|
self.weight2 = torch.tensor([[0, 0], [1., 0]]).expand(3, 1, 2,
|
|
2).to(device)
|
|
self.weight3 = torch.tensor([[0, 1.], [0, 0]]).expand(3, 1, 2,
|
|
2).to(device)
|
|
self.weight4 = torch.tensor([[0, 0], [0, 1.]]).expand(3, 1, 2,
|
|
2).to(device)
|
|
self.__dict__.update(orin_Focus.__dict__)
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
conv1 = F.conv2d(x, self.weight1, stride=2, groups=3)
|
|
conv2 = F.conv2d(x, self.weight2, stride=2, groups=3)
|
|
conv3 = F.conv2d(x, self.weight3, stride=2, groups=3)
|
|
conv4 = F.conv2d(x, self.weight4, stride=2, groups=3)
|
|
return self.conv(torch.cat([conv1, conv2, conv3, conv4], dim=1))
|