mirror of https://github.com/open-mmlab/mmyolo.git
95 lines
3.5 KiB
Python
95 lines
3.5 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import itertools
|
|
import math
|
|
from unittest import TestCase
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from mmengine.testing import assert_allclose
|
|
|
|
from mmyolo.models.layers import ExpMomentumEMA
|
|
|
|
|
|
class TestEMA(TestCase):
|
|
|
|
def test_exp_momentum_ema(self):
|
|
model = nn.Sequential(nn.Conv2d(1, 5, kernel_size=3), nn.Linear(5, 10))
|
|
# Test invalid gamma
|
|
with self.assertRaisesRegex(AssertionError,
|
|
'gamma must be greater than 0'):
|
|
ExpMomentumEMA(model, gamma=-1)
|
|
|
|
# Test EMA
|
|
model = torch.nn.Sequential(
|
|
torch.nn.Conv2d(1, 5, kernel_size=3), torch.nn.Linear(5, 10))
|
|
momentum = 0.1
|
|
gamma = 4
|
|
|
|
ema_model = ExpMomentumEMA(model, momentum=momentum, gamma=gamma)
|
|
averaged_params = [
|
|
torch.zeros_like(param) for param in model.parameters()
|
|
]
|
|
n_updates = 10
|
|
for i in range(n_updates):
|
|
updated_averaged_params = []
|
|
for p, p_avg in zip(model.parameters(), averaged_params):
|
|
p.detach().add_(torch.randn_like(p))
|
|
if i == 0:
|
|
updated_averaged_params.append(p.clone())
|
|
else:
|
|
m = (1 - momentum) * math.exp(-(1 + i) / gamma) + momentum
|
|
updated_averaged_params.append(
|
|
(p_avg * (1 - m) + p * m).clone())
|
|
ema_model.update_parameters(model)
|
|
averaged_params = updated_averaged_params
|
|
|
|
for p_target, p_ema in zip(averaged_params, ema_model.parameters()):
|
|
assert_allclose(p_target, p_ema)
|
|
|
|
def test_exp_momentum_ema_update_buffer(self):
|
|
model = nn.Sequential(
|
|
nn.Conv2d(1, 5, kernel_size=3), nn.BatchNorm2d(5, momentum=0.3),
|
|
nn.Linear(5, 10))
|
|
# Test invalid gamma
|
|
with self.assertRaisesRegex(AssertionError,
|
|
'gamma must be greater than 0'):
|
|
ExpMomentumEMA(model, gamma=-1)
|
|
|
|
# Test EMA with momentum annealing.
|
|
momentum = 0.1
|
|
gamma = 4
|
|
|
|
ema_model = ExpMomentumEMA(
|
|
model, gamma=gamma, momentum=momentum, update_buffers=True)
|
|
averaged_params = [
|
|
torch.zeros_like(param)
|
|
for param in itertools.chain(model.parameters(), model.buffers())
|
|
if param.size() != torch.Size([])
|
|
]
|
|
n_updates = 10
|
|
for i in range(n_updates):
|
|
updated_averaged_params = []
|
|
params = [
|
|
param for param in itertools.chain(model.parameters(),
|
|
model.buffers())
|
|
if param.size() != torch.Size([])
|
|
]
|
|
for p, p_avg in zip(params, averaged_params):
|
|
p.detach().add_(torch.randn_like(p))
|
|
if i == 0:
|
|
updated_averaged_params.append(p.clone())
|
|
else:
|
|
m = (1 - momentum) * math.exp(-(1 + i) / gamma) + momentum
|
|
updated_averaged_params.append(
|
|
(p_avg * (1 - m) + p * m).clone())
|
|
ema_model.update_parameters(model)
|
|
averaged_params = updated_averaged_params
|
|
|
|
ema_params = [
|
|
param for param in itertools.chain(ema_model.module.parameters(),
|
|
ema_model.module.buffers())
|
|
if param.size() != torch.Size([])
|
|
]
|
|
for p_target, p_ema in zip(averaged_params, ema_params):
|
|
assert_allclose(p_target, p_ema)
|