mmyolo/tests/test_models/test_layers/test_ema.py

95 lines
3.5 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import itertools
import math
from unittest import TestCase
import torch
import torch.nn as nn
from mmengine.testing import assert_allclose
from mmyolo.models.layers import ExpMomentumEMA
class TestEMA(TestCase):
def test_exp_momentum_ema(self):
model = nn.Sequential(nn.Conv2d(1, 5, kernel_size=3), nn.Linear(5, 10))
# Test invalid gamma
with self.assertRaisesRegex(AssertionError,
'gamma must be greater than 0'):
ExpMomentumEMA(model, gamma=-1)
# Test EMA
model = torch.nn.Sequential(
torch.nn.Conv2d(1, 5, kernel_size=3), torch.nn.Linear(5, 10))
momentum = 0.1
gamma = 4
ema_model = ExpMomentumEMA(model, momentum=momentum, gamma=gamma)
averaged_params = [
torch.zeros_like(param) for param in model.parameters()
]
n_updates = 10
for i in range(n_updates):
updated_averaged_params = []
for p, p_avg in zip(model.parameters(), averaged_params):
p.detach().add_(torch.randn_like(p))
if i == 0:
updated_averaged_params.append(p.clone())
else:
m = (1 - momentum) * math.exp(-(1 + i) / gamma) + momentum
updated_averaged_params.append(
(p_avg * (1 - m) + p * m).clone())
ema_model.update_parameters(model)
averaged_params = updated_averaged_params
for p_target, p_ema in zip(averaged_params, ema_model.parameters()):
assert_allclose(p_target, p_ema)
def test_exp_momentum_ema_update_buffer(self):
model = nn.Sequential(
nn.Conv2d(1, 5, kernel_size=3), nn.BatchNorm2d(5, momentum=0.3),
nn.Linear(5, 10))
# Test invalid gamma
with self.assertRaisesRegex(AssertionError,
'gamma must be greater than 0'):
ExpMomentumEMA(model, gamma=-1)
# Test EMA with momentum annealing.
momentum = 0.1
gamma = 4
ema_model = ExpMomentumEMA(
model, gamma=gamma, momentum=momentum, update_buffers=True)
averaged_params = [
torch.zeros_like(param)
for param in itertools.chain(model.parameters(), model.buffers())
if param.size() != torch.Size([])
]
n_updates = 10
for i in range(n_updates):
updated_averaged_params = []
params = [
param for param in itertools.chain(model.parameters(),
model.buffers())
if param.size() != torch.Size([])
]
for p, p_avg in zip(params, averaged_params):
p.detach().add_(torch.randn_like(p))
if i == 0:
updated_averaged_params.append(p.clone())
else:
m = (1 - momentum) * math.exp(-(1 + i) / gamma) + momentum
updated_averaged_params.append(
(p_avg * (1 - m) + p * m).clone())
ema_model.update_parameters(model)
averaged_params = updated_averaged_params
ema_params = [
param for param in itertools.chain(ema_model.module.parameters(),
ema_model.module.buffers())
if param.size() != torch.Size([])
]
for p_target, p_ema in zip(averaged_params, ema_params):
assert_allclose(p_target, p_ema)