mirror of https://github.com/open-mmlab/mmyolo.git
332 lines
10 KiB
Python
332 lines
10 KiB
Python
_base_ = ['../_base_/default_runtime.py', 'yolox_p5_tta.py']
|
|
|
|
# ========================Frequently modified parameters======================
|
|
# -----data related-----
|
|
data_root = 'data/coco/' # Root path of data
|
|
# path of train annotation file
|
|
train_ann_file = 'annotations/instances_train2017.json'
|
|
train_data_prefix = 'train2017/' # Prefix of train image path
|
|
# path of val annotation file
|
|
val_ann_file = 'annotations/instances_val2017.json'
|
|
val_data_prefix = 'val2017/' # Prefix of train image path
|
|
|
|
num_classes = 80 # Number of classes for classification
|
|
# Batch size of a single GPU during training
|
|
train_batch_size_per_gpu = 8
|
|
# Worker to pre-fetch data for each single GPU during tarining
|
|
train_num_workers = 8
|
|
# Presistent_workers must be False if num_workers is 0
|
|
persistent_workers = True
|
|
|
|
# -----train val related-----
|
|
# Base learning rate for optim_wrapper. Corresponding to 8xb16=64 bs
|
|
base_lr = 0.01
|
|
max_epochs = 300 # Maximum training epochs
|
|
|
|
model_test_cfg = dict(
|
|
yolox_style=True, # better
|
|
# The config of multi-label for multi-class prediction
|
|
multi_label=True, # 40.5 -> 40.7
|
|
score_thr=0.001, # Threshold to filter out boxes
|
|
max_per_img=300, # Max number of detections of each image
|
|
nms=dict(type='nms', iou_threshold=0.65)) # NMS type and threshold
|
|
|
|
# ========================Possible modified parameters========================
|
|
# -----data related-----
|
|
img_scale = (640, 640) # width, height
|
|
# Dataset type, this will be used to define the dataset
|
|
dataset_type = 'YOLOv5CocoDataset'
|
|
# Batch size of a single GPU during validation
|
|
val_batch_size_per_gpu = 1
|
|
# Worker to pre-fetch data for each single GPU during validation
|
|
val_num_workers = 2
|
|
|
|
# -----model related-----
|
|
# The scaling factor that controls the depth of the network structure
|
|
deepen_factor = 0.33
|
|
# The scaling factor that controls the width of the network structure
|
|
widen_factor = 0.5
|
|
norm_cfg = dict(type='BN', momentum=0.03, eps=0.001)
|
|
# generate new random resize shape interval
|
|
batch_augments_interval = 10
|
|
|
|
# -----train val related-----
|
|
weight_decay = 0.0005
|
|
loss_cls_weight = 1.0
|
|
loss_bbox_weight = 5.0
|
|
loss_obj_weight = 1.0
|
|
loss_bbox_aux_weight = 1.0
|
|
center_radius = 2.5 # SimOTAAssigner
|
|
num_last_epochs = 15
|
|
random_affine_scaling_ratio_range = (0.1, 2)
|
|
mixup_ratio_range = (0.8, 1.6)
|
|
# Save model checkpoint and validation intervals
|
|
save_epoch_intervals = 10
|
|
# The maximum checkpoints to keep.
|
|
max_keep_ckpts = 3
|
|
|
|
ema_momentum = 0.0001
|
|
|
|
# ===============================Unmodified in most cases====================
|
|
# model settings
|
|
model = dict(
|
|
type='YOLODetector',
|
|
init_cfg=dict(
|
|
type='Kaiming',
|
|
layer='Conv2d',
|
|
a=2.23606797749979, # math.sqrt(5)
|
|
distribution='uniform',
|
|
mode='fan_in',
|
|
nonlinearity='leaky_relu'),
|
|
# TODO: Waiting for mmengine support
|
|
use_syncbn=False,
|
|
data_preprocessor=dict(
|
|
type='YOLOv5DetDataPreprocessor',
|
|
pad_size_divisor=32,
|
|
batch_augments=[
|
|
dict(
|
|
type='YOLOXBatchSyncRandomResize',
|
|
random_size_range=(480, 800),
|
|
size_divisor=32,
|
|
interval=batch_augments_interval)
|
|
]),
|
|
backbone=dict(
|
|
type='YOLOXCSPDarknet',
|
|
deepen_factor=deepen_factor,
|
|
widen_factor=widen_factor,
|
|
out_indices=(2, 3, 4),
|
|
spp_kernal_sizes=(5, 9, 13),
|
|
norm_cfg=norm_cfg,
|
|
act_cfg=dict(type='SiLU', inplace=True),
|
|
),
|
|
neck=dict(
|
|
type='YOLOXPAFPN',
|
|
deepen_factor=deepen_factor,
|
|
widen_factor=widen_factor,
|
|
in_channels=[256, 512, 1024],
|
|
out_channels=256,
|
|
norm_cfg=norm_cfg,
|
|
act_cfg=dict(type='SiLU', inplace=True)),
|
|
bbox_head=dict(
|
|
type='YOLOXHead',
|
|
head_module=dict(
|
|
type='YOLOXHeadModule',
|
|
num_classes=num_classes,
|
|
in_channels=256,
|
|
feat_channels=256,
|
|
widen_factor=widen_factor,
|
|
stacked_convs=2,
|
|
featmap_strides=(8, 16, 32),
|
|
use_depthwise=False,
|
|
norm_cfg=norm_cfg,
|
|
act_cfg=dict(type='SiLU', inplace=True),
|
|
),
|
|
loss_cls=dict(
|
|
type='mmdet.CrossEntropyLoss',
|
|
use_sigmoid=True,
|
|
reduction='sum',
|
|
loss_weight=loss_cls_weight),
|
|
loss_bbox=dict(
|
|
type='mmdet.IoULoss',
|
|
mode='square',
|
|
eps=1e-16,
|
|
reduction='sum',
|
|
loss_weight=loss_bbox_weight),
|
|
loss_obj=dict(
|
|
type='mmdet.CrossEntropyLoss',
|
|
use_sigmoid=True,
|
|
reduction='sum',
|
|
loss_weight=loss_obj_weight),
|
|
loss_bbox_aux=dict(
|
|
type='mmdet.L1Loss',
|
|
reduction='sum',
|
|
loss_weight=loss_bbox_aux_weight)),
|
|
train_cfg=dict(
|
|
assigner=dict(
|
|
type='mmdet.SimOTAAssigner',
|
|
center_radius=center_radius,
|
|
iou_calculator=dict(type='mmdet.BboxOverlaps2D'))),
|
|
test_cfg=model_test_cfg)
|
|
|
|
pre_transform = [
|
|
dict(type='LoadImageFromFile', backend_args=_base_.backend_args),
|
|
dict(type='LoadAnnotations', with_bbox=True)
|
|
]
|
|
|
|
train_pipeline_stage1 = [
|
|
*pre_transform,
|
|
dict(
|
|
type='Mosaic',
|
|
img_scale=img_scale,
|
|
pad_val=114.0,
|
|
pre_transform=pre_transform),
|
|
dict(
|
|
type='mmdet.RandomAffine',
|
|
scaling_ratio_range=random_affine_scaling_ratio_range,
|
|
# img_scale is (width, height)
|
|
border=(-img_scale[0] // 2, -img_scale[1] // 2)),
|
|
dict(
|
|
type='YOLOXMixUp',
|
|
img_scale=img_scale,
|
|
ratio_range=mixup_ratio_range,
|
|
pad_val=114.0,
|
|
pre_transform=pre_transform),
|
|
dict(type='mmdet.YOLOXHSVRandomAug'),
|
|
dict(type='mmdet.RandomFlip', prob=0.5),
|
|
dict(
|
|
type='mmdet.FilterAnnotations',
|
|
min_gt_bbox_wh=(1, 1),
|
|
keep_empty=False),
|
|
dict(
|
|
type='mmdet.PackDetInputs',
|
|
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
|
|
'flip_direction'))
|
|
]
|
|
|
|
train_pipeline_stage2 = [
|
|
*pre_transform,
|
|
dict(type='mmdet.Resize', scale=img_scale, keep_ratio=True),
|
|
dict(
|
|
type='mmdet.Pad',
|
|
pad_to_square=True,
|
|
# If the image is three-channel, the pad value needs
|
|
# to be set separately for each channel.
|
|
pad_val=dict(img=(114.0, 114.0, 114.0))),
|
|
dict(type='mmdet.YOLOXHSVRandomAug'),
|
|
dict(type='mmdet.RandomFlip', prob=0.5),
|
|
dict(
|
|
type='mmdet.FilterAnnotations',
|
|
min_gt_bbox_wh=(1, 1),
|
|
keep_empty=False),
|
|
dict(type='mmdet.PackDetInputs')
|
|
]
|
|
|
|
train_dataloader = dict(
|
|
batch_size=train_batch_size_per_gpu,
|
|
num_workers=train_num_workers,
|
|
persistent_workers=persistent_workers,
|
|
pin_memory=True,
|
|
collate_fn=dict(type='yolov5_collate'),
|
|
sampler=dict(type='DefaultSampler', shuffle=True),
|
|
dataset=dict(
|
|
type=dataset_type,
|
|
data_root=data_root,
|
|
ann_file=train_ann_file,
|
|
data_prefix=dict(img=train_data_prefix),
|
|
filter_cfg=dict(filter_empty_gt=False, min_size=32),
|
|
pipeline=train_pipeline_stage1))
|
|
|
|
test_pipeline = [
|
|
dict(type='LoadImageFromFile', backend_args=_base_.backend_args),
|
|
dict(type='mmdet.Resize', scale=img_scale, keep_ratio=True),
|
|
dict(
|
|
type='mmdet.Pad',
|
|
pad_to_square=True,
|
|
pad_val=dict(img=(114.0, 114.0, 114.0))),
|
|
dict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'),
|
|
dict(
|
|
type='mmdet.PackDetInputs',
|
|
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
|
'scale_factor'))
|
|
]
|
|
|
|
val_dataloader = dict(
|
|
batch_size=val_batch_size_per_gpu,
|
|
num_workers=val_num_workers,
|
|
persistent_workers=persistent_workers,
|
|
pin_memory=True,
|
|
drop_last=False,
|
|
sampler=dict(type='DefaultSampler', shuffle=False),
|
|
dataset=dict(
|
|
type=dataset_type,
|
|
data_root=data_root,
|
|
ann_file=val_ann_file,
|
|
data_prefix=dict(img=val_data_prefix),
|
|
test_mode=True,
|
|
pipeline=test_pipeline))
|
|
test_dataloader = val_dataloader
|
|
|
|
# Reduce evaluation time
|
|
val_evaluator = dict(
|
|
type='mmdet.CocoMetric',
|
|
proposal_nums=(100, 1, 10),
|
|
ann_file=data_root + val_ann_file,
|
|
metric='bbox')
|
|
|
|
test_evaluator = val_evaluator
|
|
|
|
# optimizer
|
|
# default 8 gpu
|
|
optim_wrapper = dict(
|
|
type='OptimWrapper',
|
|
optimizer=dict(
|
|
type='SGD',
|
|
lr=base_lr,
|
|
momentum=0.9,
|
|
weight_decay=weight_decay,
|
|
nesterov=True),
|
|
paramwise_cfg=dict(norm_decay_mult=0., bias_decay_mult=0.))
|
|
|
|
# learning rate
|
|
param_scheduler = [
|
|
dict(
|
|
# use quadratic formula to warm up 5 epochs
|
|
# and lr is updated by iteration
|
|
# TODO: fix default scope in get function
|
|
type='mmdet.QuadraticWarmupLR',
|
|
by_epoch=True,
|
|
begin=0,
|
|
end=5,
|
|
convert_to_iter_based=True),
|
|
dict(
|
|
# use cosine lr from 5 to 285 epoch
|
|
type='CosineAnnealingLR',
|
|
eta_min=base_lr * 0.05,
|
|
begin=5,
|
|
T_max=max_epochs - num_last_epochs,
|
|
end=max_epochs - num_last_epochs,
|
|
by_epoch=True,
|
|
convert_to_iter_based=True),
|
|
dict(
|
|
# use fixed lr during last 15 epochs
|
|
type='ConstantLR',
|
|
by_epoch=True,
|
|
factor=1,
|
|
begin=max_epochs - num_last_epochs,
|
|
end=max_epochs,
|
|
)
|
|
]
|
|
|
|
default_hooks = dict(
|
|
checkpoint=dict(
|
|
type='CheckpointHook',
|
|
interval=save_epoch_intervals,
|
|
max_keep_ckpts=max_keep_ckpts,
|
|
save_best='auto'))
|
|
|
|
custom_hooks = [
|
|
dict(
|
|
type='YOLOXModeSwitchHook',
|
|
num_last_epochs=num_last_epochs,
|
|
new_train_pipeline=train_pipeline_stage2,
|
|
priority=48),
|
|
dict(type='mmdet.SyncNormHook', priority=48),
|
|
dict(
|
|
type='EMAHook',
|
|
ema_type='ExpMomentumEMA',
|
|
momentum=ema_momentum,
|
|
update_buffers=True,
|
|
strict_load=False,
|
|
priority=49)
|
|
]
|
|
|
|
train_cfg = dict(
|
|
type='EpochBasedTrainLoop',
|
|
max_epochs=max_epochs,
|
|
val_interval=save_epoch_intervals,
|
|
dynamic_intervals=[(max_epochs - num_last_epochs, 1)])
|
|
|
|
auto_scale_lr = dict(base_batch_size=8 * train_batch_size_per_gpu)
|
|
val_cfg = dict(type='ValLoop')
|
|
test_cfg = dict(type='TestLoop')
|