OpenMMLab YOLO series toolbox and benchmark
 
 
 
 
Go to file
Yijie Zheng 71fc5670cb
[Docs] Add an ionogram example in MMYOLO application (#643)
* [Fix] fix the config link for rtmdet_tiny

* fir the lint

* upload configs

* [Docs]Add doc for application examples

* [Doc] fix h1 title for ionogram_detection.md

* [Fix] update doc links for project/misc/

* Update links for application_examples in README

* Update links for application_examples in README

* Fix the bad commit caused by a mistake merge.

* Fix unnecessary modification on Table of Contents

* Add description of dataset preparation

* Add description of dataset preparation

* Update dataset analysis and pipeline visualization

* fix line too long

* Update rtmdet_s in the benchmark

* fix typo in the doc

* Replace local ckpt path with url

* Update file tree, check out for spaces

* Beautify configs

* Beautify configs

* Add introduction of annotation tool

* Update rtmdet benchmark

* Update rtmdet configs

* Fix typo

* Add English doc

* Minor revisio

* Fix typo

* Revision - check labels

Co-authored-by: Range King <RangeKingHZ@gmail.com>

* Revision - sentence structure

Co-authored-by: Range King <RangeKingHZ@gmail.com>

* Revision - fix typo

Co-authored-by: Range King <RangeKingHZ@gmail.com>

* Revision - parameters and FLOPs

Co-authored-by: Range King <RangeKingHZ@gmail.com>

* Revision - replace flops with FLOPs

Co-authored-by: Range King <RangeKingHZ@gmail.com>

* Revision - enhance readability

Co-authored-by: Range King <RangeKingHZ@gmail.com>

* Revision - fix typo

Co-authored-by: Range King <RangeKingHZ@gmail.com>

* Revision - correct grammatical errors

Co-authored-by: Range King <RangeKingHZ@gmail.com>

* Revision - enhance

Co-authored-by: Range King <RangeKingHZ@gmail.com>

---------

Co-authored-by: Range King <RangeKingHZ@gmail.com>
2023-03-13 11:29:37 +08:00
.circleci [Feature] Support auto registry based on mmdet 3.0.0rc6 (#597) 2023-02-28 11:01:13 +08:00
.dev_scripts Rotated object detection and RTMDet-R (#513) 2023-03-02 10:27:46 +08:00
.github
configs [Docs] Add Multi-scale training and testing (#630) 2023-03-07 16:18:43 +08:00
demo Adjust the order of package imports in boxam_vis_demo.py (#655) 2023-03-13 10:56:54 +08:00
docker [Feature] Support auto registry based on mmdet 3.0.0rc6 (#597) 2023-02-28 11:01:13 +08:00
docs [Docs] Add an ionogram example in MMYOLO application (#643) 2023-03-13 11:29:37 +08:00
mmyolo [Feature] Support RTMDet Ins Segmentation Inference (#583) 2023-03-02 15:11:09 +08:00
projects [Docs] Add an ionogram example in MMYOLO application (#643) 2023-03-13 11:29:37 +08:00
requirements Rotated object detection and RTMDet-R (#513) 2023-03-02 10:27:46 +08:00
resources
tests Razor backbone cfg & log update (#610) 2023-03-02 17:01:41 +08:00
tools optimize the convert_kd_ckpt_to_student.py file (#647) 2023-03-09 19:07:29 +08:00
.gitignore [Feature] Add a tool for scheduler visualization (#479) 2023-01-18 15:03:02 +08:00
.pre-commit-config-zh-cn.yaml Use official isort 2023-01-31 14:50:10 +08:00
.pre-commit-config.yaml Use official isort 2023-01-31 14:50:10 +08:00
.readthedocs.yml [Docs] Refactor zh-CN docs (#568) 2023-02-20 15:51:37 +08:00
LICENSE
MANIFEST.in fix pypi (#205) 2022-11-03 19:03:06 +08:00
README.md [Docs] Add an ionogram example in MMYOLO application (#643) 2023-03-13 11:29:37 +08:00
README_zh-CN.md [Docs] Add an ionogram example in MMYOLO application (#643) 2023-03-13 11:29:37 +08:00
model-index.yml [Feature] Support YOLOv8 training (#458) 2023-01-18 14:16:37 +08:00
pytest.ini
requirements.txt
setup.cfg Add v0.3.0 changelog (#440) 2023-01-08 15:31:58 +08:00
setup.py adjust the minimum supported python version to 3.9 (#449) 2023-01-09 18:31:37 +08:00

README.md

English | 简体中文

📄 Table of Contents

🥳 🚀 What's New 🔝

💎 v0.5.0 was released on 2/3/2023:

  1. Support RTMDet-R rotated object detection
  2. Support for using mask annotation to improve YOLOv8 object detection performance
  3. Support MMRazor searchable NAS sub-network as the backbone of YOLO series algorithm
  4. Support calling MMRazor to distill the knowledge of RTMDet
  5. MMYOLO document structure optimization, comprehensive content upgrade
  6. Improve YOLOX mAP and training speed based on RTMDet training hyperparameters
  7. Support calculation of model parameters and FLOPs, provide GPU latency data on T4 devices, and update Model Zoo
  8. Support test-time augmentation (TTA)
  9. Support RTMDet, YOLOv8 and YOLOv7 assigner visualization

For release history and update details, please refer to changelog.

Highlight 🔝

We are excited to announce our latest work on real-time object recognition tasks, RTMDet, a family of fully convolutional single-stage detectors. RTMDet not only achieves the best parameter-accuracy trade-off on object detection from tiny to extra-large model sizes but also obtains new state-of-the-art performance on instance segmentation and rotated object detection tasks. Details can be found in the technical report. Pre-trained models are here.

PWC PWC PWC

Task Dataset AP FPS(TRT FP16 BS1 3090)
Object Detection COCO 52.8 322
Instance Segmentation COCO 44.6 188
Rotated Object Detection DOTA 78.9(single-scale)/81.3(multi-scale) 121

MMYOLO currently implements the object detection and rotated object detection algorithm, but it has a significant training acceleration compared to the MMDeteciton version. The training speed is 2.6 times faster than the previous version.

📖 Introduction 🔝

MMYOLO is an open source toolbox for YOLO series algorithms based on PyTorch and MMDetection. It is a part of the OpenMMLab project.

The master branch works with PyTorch 1.6+.

Major features
  • 🕹️ Unified and convenient benchmark

    MMYOLO unifies the implementation of modules in various YOLO algorithms and provides a unified benchmark. Users can compare and analyze in a fair and convenient way.

  • 📚 Rich and detailed documentation

    MMYOLO provides rich documentation for getting started, model deployment, advanced usages, and algorithm analysis, making it easy for users at different levels to get started and make extensions quickly.

  • 🧩 Modular Design

    MMYOLO decomposes the framework into different components where users can easily customize a model by combining different modules with various training and testing strategies.

BaseModule-P5 The figure above is contributed by RangeKing@GitHub, thank you very much!

And the figure of P6 model is in model_design.md.

🛠️ Installation 🔝

MMYOLO relies on PyTorch, MMCV, MMEngine, and MMDetection. Below are quick steps for installation. Please refer to the Install Guide for more detailed instructions.

conda create -n mmyolo python=3.8 pytorch==1.10.1 torchvision==0.11.2 cudatoolkit=11.3 -c pytorch -y
conda activate mmyolo
pip install openmim
mim install "mmengine>=0.6.0"
mim install "mmcv>=2.0.0rc4,<2.1.0"
mim install "mmdet>=3.0.0rc6,<3.1.0"
git clone https://github.com/open-mmlab/mmyolo.git
cd mmyolo
# Install albumentations
pip install -r requirements/albu.txt
# Install MMYOLO
mim install -v -e .

👨‍🏫 Tutorial 🔝

MMYOLO is based on MMDetection and adopts the same code structure and design approach. To get better use of this, please read MMDetection Overview for the first understanding of MMDetection.

The usage of MMYOLO is almost identical to MMDetection and all tutorials are straightforward to use, you can also learn about MMDetection User Guide and Advanced Guide.

For different parts from MMDetection, we have also prepared user guides and advanced guides, please read our documentation.

Get Started
Recommended Topics
Common Usage
Useful Tools
Basic Tutorials
Advanced Tutorials
Descriptions

📊 Overview of Benchmark and Model Zoo 🔝

Results and models are available in the model zoo.

Supported Tasks
  • Object detection
  • Rotated object detection
Supported Algorithms
Supported Datasets
  • COCO Dataset
  • VOC Dataset
  • CrowdHuman Dataset
  • DOTA 1.0 Dataset
Module Components
Backbones Necks Loss Common
  • YOLOv5CSPDarknet
  • YOLOv8CSPDarknet
  • YOLOXCSPDarknet
  • EfficientRep
  • CSPNeXt
  • YOLOv7Backbone
  • PPYOLOECSPResNet
  • mmdet backbone
  • mmcls backbone
  • timm
  • YOLOv5PAFPN
  • YOLOv8PAFPN
  • YOLOv6RepPAFPN
  • YOLOXPAFPN
  • CSPNeXtPAFPN
  • YOLOv7PAFPN
  • PPYOLOECSPPAFPN
  • IoULoss
  • mmdet loss

FAQ 🔝

Please refer to the FAQ for frequently asked questions.

🙌 Contributing 🔝

We appreciate all contributions to improving MMYOLO. Ongoing projects can be found in our GitHub Projects. Welcome community users to participate in these projects. Please refer to CONTRIBUTING.md for the contributing guideline.

🤝 Acknowledgement 🔝

MMYOLO is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedback. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to re-implement existing methods and develop their own new detectors.

🖊️ Citation 🔝

If you find this project useful in your research, please consider citing:

@misc{mmyolo2022,
    title={{MMYOLO: OpenMMLab YOLO} series toolbox and benchmark},
    author={MMYOLO Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmyolo}},
    year={2022}
}

🎫 License 🔝

This project is released under the GPL 3.0 license.

🏗️ Projects in OpenMMLab 🔝

  • MMEngine: OpenMMLab foundational library for training deep learning models.
  • MMCV: OpenMMLab foundational library for computer vision.
  • MIM: MIM installs OpenMMLab packages.
  • MMClassification: OpenMMLab image classification toolbox and benchmark.
  • MMDetection: OpenMMLab detection toolbox and benchmark.
  • MMDetection3D: OpenMMLab's next-generation platform for general 3D object detection.
  • MMRotate: OpenMMLab rotated object detection toolbox and benchmark.
  • MMYOLO: OpenMMLab YOLO series toolbox and benchmark.
  • MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.
  • MMOCR: OpenMMLab text detection, recognition, and understanding toolbox.
  • MMPose: OpenMMLab pose estimation toolbox and benchmark.
  • MMHuman3D: OpenMMLab 3D human parametric model toolbox and benchmark.
  • MMSelfSup: OpenMMLab self-supervised learning toolbox and benchmark.
  • MMRazor: OpenMMLab model compression toolbox and benchmark.
  • MMFewShot: OpenMMLab fewshot learning toolbox and benchmark.
  • MMAction2: OpenMMLab's next-generation action understanding toolbox and benchmark.
  • MMTracking: OpenMMLab video perception toolbox and benchmark.
  • MMFlow: OpenMMLab optical flow toolbox and benchmark.
  • MMEditing: OpenMMLab image and video editing toolbox.
  • MMGeneration: OpenMMLab image and video generative models toolbox.
  • MMDeploy: OpenMMLab model deployment framework.
  • MMEval: OpenMMLab machine learning evaluation library.