mmyolo/configs/yolov8
Nioolek 75fc8fc2a3
[Feature] YOLOv8 supports using mask annotation to optimize bbox (#484)
* add cfg

* add copypaste

* add todo

* 在mosaic和mixup中处理gt_masks,改config

* fix cat bug

* add finetune box in affine

* add repr

* del albu config in l

* add doc

* add config

* format code

* fix loadmask

* addconfig,fix mask

* fix loadann

* fix tra

* update LoadAnnotations

* update

* support mask

* fix error

* fix error

* fix config and no maskrefine bug

* fix

* fix

* update config

* format code

* beauty config

* add yolov5 config and readme

* beauty yolov5 config

* add ut

* fix ut. bitmap 2 poly

* fix ut and add mix transform ut.

* fix bool

* fix loadann

* rollback yolov5

* rollback yolov5

* format

* 提高速度

* update

---------

Co-authored-by: huanghaian <huanghaian@sensetime.com>
2023-02-20 11:11:13 +08:00
..
README.md [Feature] YOLOv8 supports using mask annotation to optimize bbox (#484) 2023-02-20 11:11:13 +08:00
metafile.yml [Feature] YOLOv8 supports using mask annotation to optimize bbox (#484) 2023-02-20 11:11:13 +08:00
yolov8_l_mask-refine_syncbn_fast_8xb16-500e_coco.py [Feature] YOLOv8 supports using mask annotation to optimize bbox (#484) 2023-02-20 11:11:13 +08:00
yolov8_l_syncbn_fast_8xb16-500e_coco.py [Feature] YOLOv8 supports using mask annotation to optimize bbox (#484) 2023-02-20 11:11:13 +08:00
yolov8_m_mask-refine_syncbn_fast_8xb16-500e_coco.py [Feature] YOLOv8 supports using mask annotation to optimize bbox (#484) 2023-02-20 11:11:13 +08:00
yolov8_m_syncbn_fast_8xb16-500e_coco.py [Feature] YOLOv8 supports using mask annotation to optimize bbox (#484) 2023-02-20 11:11:13 +08:00
yolov8_n_mask-refine_syncbn_fast_8xb16-500e_coco.py [Feature] YOLOv8 supports using mask annotation to optimize bbox (#484) 2023-02-20 11:11:13 +08:00
yolov8_n_syncbn_fast_8xb16-500e_coco.py [Feature] Support YOLOv8 inference (#445) 2023-01-11 19:01:06 +08:00
yolov8_s_mask-refine_syncbn_fast_8xb16-500e_coco.py [Feature] YOLOv8 supports using mask annotation to optimize bbox (#484) 2023-02-20 11:11:13 +08:00
yolov8_s_syncbn_fast_8xb16-500e_coco.py [Feature] YOLOv8 supports using mask annotation to optimize bbox (#484) 2023-02-20 11:11:13 +08:00
yolov8_x_mask-refine_syncbn_fast_8xb16-500e_coco.py [Feature] YOLOv8 supports using mask annotation to optimize bbox (#484) 2023-02-20 11:11:13 +08:00
yolov8_x_syncbn_fast_8xb16-500e_coco.py [Feature] Support YOLOv8 inference (#445) 2023-01-11 19:01:06 +08:00

README.md

YOLOv8

Abstract

Ultralytics YOLOv8, developed by Ultralytics, is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection, image segmentation and image classification tasks.

performance
YOLOv8-P5 model structure

Results and models

COCO

Backbone Arch size Mask Refine SyncBN AMP Mem (GB) box AP Config Download
YOLOv8-n P5 640 No Yes Yes 2.8 37.2 config model | log
YOLOv8-n P5 640 Yes Yes Yes 2.5 37.4 (+0.2) config model | log
YOLOv8-s P5 640 No Yes Yes 4.0 44.2 config model | log
YOLOv8-s P5 640 Yes Yes Yes 4.0 45.1 (+0.9) config model | log
YOLOv8-m P5 640 No Yes Yes 7.2 49.8 config model | log
YOLOv8-m P5 640 Yes Yes Yes 7.0 50.6 (+0.8) config model | log
YOLOv8-l P5 640 No Yes Yes 9.8 52.1 config model | log
YOLOv8-l P5 640 Yes Yes Yes 9.1 53.0 (+0.9) config model | log
YOLOv8-x P5 640 No Yes Yes 12.2 52.7 config model | log
YOLOv8-x P5 640 Yes Yes Yes 12.4 54.0 (+1.3) config model | log

Note

  1. We use 8x A100 for training, and the single-GPU batch size is 16. This is different from the official code, but has no effect on performance.
  2. The performance is unstable and may fluctuate by about 0.3 mAP and the highest performance weight in COCO training in YOLOv8 may not be the last epoch. The performance shown above is the best model.
  3. We provide scripts to convert official weights to MMYOLO.
  4. SyncBN means using SyncBN, AMP indicates training with mixed precision.
  5. The performance of Mask Refine training is for the weight performance officially released by YOLOv8. Mask Refine means refining bbox by mask while loading annotations and transforming after YOLOv5RandomAffine, and the L and X models use Copy Paste.

Citation