mmyolo/configs/yolox/yolox_tiny_8xb8-300e_coco.py

62 lines
1.9 KiB
Python

_base_ = './yolox_s_8xb8-300e_coco.py'
deepen_factor = 0.33
widen_factor = 0.375
# model settings
model = dict(
data_preprocessor=dict(batch_augments=[
dict(
type='mmdet.BatchSyncRandomResize',
random_size_range=(320, 640), # note
size_divisor=32,
interval=10)
]),
backbone=dict(deepen_factor=deepen_factor, widen_factor=widen_factor),
neck=dict(deepen_factor=deepen_factor, widen_factor=widen_factor),
bbox_head=dict(head_module=dict(widen_factor=widen_factor)))
img_scale = _base_.img_scale
pre_transform = _base_.pre_transform
train_pipeline_stage1 = [
*pre_transform,
dict(
type='Mosaic',
img_scale=img_scale,
pad_val=114.0,
pre_transform=pre_transform),
dict(
type='mmdet.RandomAffine',
scaling_ratio_range=(0.5, 1.5), # note
border=(-img_scale[0] // 2, -img_scale[1] // 2)),
dict(type='mmdet.YOLOXHSVRandomAug'),
dict(type='mmdet.RandomFlip', prob=0.5),
dict(
type='mmdet.FilterAnnotations',
min_gt_bbox_wh=(1, 1),
keep_empty=False),
dict(
type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
'flip_direction'))
]
test_pipeline = [
dict(type='LoadImageFromFile', file_client_args=_base_.file_client_args),
dict(type='mmdet.Resize', scale=(416, 416), keep_ratio=True), # note
dict(
type='mmdet.Pad',
pad_to_square=True,
pad_val=dict(img=(114.0, 114.0, 114.0))),
dict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'),
dict(
type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor'))
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline_stage1))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = val_dataloader