mmyolo/tests/test_models/test_backbone/test_csp_darknet.py

98 lines
3.5 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from unittest import TestCase
import pytest
import torch
from parameterized import parameterized
from torch.nn.modules.batchnorm import _BatchNorm
from mmyolo.models.backbones import YOLOv5CSPDarknet, YOLOXCSPDarknet
from mmyolo.utils import register_all_modules
from .utils import check_norm_state, is_norm
register_all_modules()
class TestCSPDarknet(TestCase):
@parameterized.expand([(YOLOv5CSPDarknet, ), (YOLOXCSPDarknet, )])
def test_init(self, module_class):
# out_indices in range(len(arch_setting) + 1)
with pytest.raises(AssertionError):
module_class(out_indices=(6, ))
with pytest.raises(ValueError):
# frozen_stages must in range(-1, len(arch_setting) + 1)
module_class(frozen_stages=6)
@parameterized.expand([(YOLOv5CSPDarknet, ), (YOLOXCSPDarknet, )])
def test_forward(self, module_class):
# Test CSPDarknet with first stage frozen
frozen_stages = 1
model = module_class(frozen_stages=frozen_stages)
model.init_weights()
model.train()
for mod in model.stem.modules():
for param in mod.parameters():
assert param.requires_grad is False
for i in range(1, frozen_stages + 1):
layer = getattr(model, f'stage{i}')
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
assert mod.training is False
for param in layer.parameters():
assert param.requires_grad is False
# Test CSPDarknet with norm_eval=True
model = module_class(norm_eval=True)
model.train()
assert check_norm_state(model.modules(), False)
# Test CSPDarknet-P5 forward with widen_factor=0.25
model = module_class(
arch='P5', widen_factor=0.25, out_indices=range(0, 5))
model.train()
imgs = torch.randn(1, 3, 64, 64)
feat = model(imgs)
assert len(feat) == 5
assert feat[0].shape == torch.Size((1, 16, 32, 32))
assert feat[1].shape == torch.Size((1, 32, 16, 16))
assert feat[2].shape == torch.Size((1, 64, 8, 8))
assert feat[3].shape == torch.Size((1, 128, 4, 4))
assert feat[4].shape == torch.Size((1, 256, 2, 2))
# Test CSPDarknet forward with dict(type='ReLU')
model = module_class(
widen_factor=0.125,
act_cfg=dict(type='ReLU'),
out_indices=range(0, 5))
model.train()
imgs = torch.randn(1, 3, 64, 64)
feat = model(imgs)
assert len(feat) == 5
assert feat[0].shape == torch.Size((1, 8, 32, 32))
assert feat[1].shape == torch.Size((1, 16, 16, 16))
assert feat[2].shape == torch.Size((1, 32, 8, 8))
assert feat[3].shape == torch.Size((1, 64, 4, 4))
assert feat[4].shape == torch.Size((1, 128, 2, 2))
# Test CSPDarknet with BatchNorm forward
model = module_class(widen_factor=0.125, out_indices=range(0, 5))
for m in model.modules():
if is_norm(m):
assert isinstance(m, _BatchNorm)
model.train()
imgs = torch.randn(1, 3, 64, 64)
feat = model(imgs)
assert len(feat) == 5
assert feat[0].shape == torch.Size((1, 8, 32, 32))
assert feat[1].shape == torch.Size((1, 16, 16, 16))
assert feat[2].shape == torch.Size((1, 32, 8, 8))
assert feat[3].shape == torch.Size((1, 64, 4, 4))
assert feat[4].shape == torch.Size((1, 128, 2, 2))