mmyolo/configs/yolov5/voc/yolov5_n-v61_fast_1xb64-50e_voc.py
Nioolek 5ef3606482 [Feature] Support VOC Dataset in YOLOv5 (#134)
* add yolov5 voc training

* fix mosaic bug

* fix mosaic bug and temp config

* fix mosaic bug

* update config

* support training on voc dataset

* format code

* format code

* Optimize Code. Change `RandomTransform` to `OneOf`

* Change `OneOf` to `mmcv.RandomChoice`

* fix yolov5coco dataset

* fix yolov5coco dataset

* fix bug, format code

* format config

* format code

* add yolov5 voc training

* rebase

* fix mosaic bug

* update config

* support training on voc dataset

* format code

* format code

* Optimize Code. Change `RandomTransform` to `OneOf`

* Change `OneOf` to `mmcv.RandomChoice`

* fix yolov5coco dataset

* fix yolov5coco dataset

* fix bug, format code

* format code

* add yolov5 voc training

* fix mosaic bug and temp config

* fix mosaic bug

* update config

* support training on voc dataset

* format code

* format code

* Optimize Code. Change `RandomTransform` to `OneOf`

* Change `OneOf` to `mmcv.RandomChoice`

* fix yolov5coco dataset

* fix yolov5coco dataset

* fix bug, format code

* format code

* add yolov5 voc training

* rebase

* fix mosaic bug

* update config

* support training on voc dataset

* format code

* format code

* Optimize Code. Change `RandomTransform` to `OneOf`

* Change `OneOf` to `mmcv.RandomChoice`

* fix yolov5coco dataset

* fix yolov5coco dataset

* fix bug, format code

* format code

* format code

* fix lint

* add unittest

* add auto loss_weight

* add doc; add model log url

* add doc; add model log url

* add doc; add model log url
2022-11-03 19:03:06 +08:00

18 lines
544 B
Python

_base_ = './yolov5_s-v61_fast_1xb64-50e_voc.py'
deepen_factor = 0.33
widen_factor = 0.25
load_from = 'https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_n-v61_syncbn_fast_8xb16-300e_coco/yolov5_n-v61_syncbn_fast_8xb16-300e_coco_20220919_090739-b804c1ad.pth' # noqa
model = dict(
backbone=dict(
deepen_factor=deepen_factor,
widen_factor=widen_factor,
),
neck=dict(
deepen_factor=deepen_factor,
widen_factor=widen_factor,
),
bbox_head=dict(head_module=dict(widen_factor=widen_factor)))