mmyolo/tools/model_converters/yolov7_to_mmyolo.py

200 lines
7.8 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
from collections import OrderedDict
import torch
convert_dict = {
# stem
'model.0': 'backbone.stem.0',
'model.1': 'backbone.stem.1',
'model.2': 'backbone.stem.2',
# stage1
# ConvModule
'model.3': 'backbone.stage1.0',
# ELANBlock expand_channel_2x
'model.4': 'backbone.stage1.1.short_conv',
'model.5': 'backbone.stage1.1.main_conv',
'model.6': 'backbone.stage1.1.blocks.0.0',
'model.7': 'backbone.stage1.1.blocks.0.1',
'model.8': 'backbone.stage1.1.blocks.1.0',
'model.9': 'backbone.stage1.1.blocks.1.1',
'model.11': 'backbone.stage1.1.final_conv',
# stage2
# MaxPoolBlock reduce_channel_2x
'model.13': 'backbone.stage2.0.maxpool_branches.1',
'model.14': 'backbone.stage2.0.stride_conv_branches.0',
'model.15': 'backbone.stage2.0.stride_conv_branches.1',
# ELANBlock expand_channel_2x
'model.17': 'backbone.stage2.1.short_conv',
'model.18': 'backbone.stage2.1.main_conv',
'model.19': 'backbone.stage2.1.blocks.0.0',
'model.20': 'backbone.stage2.1.blocks.0.1',
'model.21': 'backbone.stage2.1.blocks.1.0',
'model.22': 'backbone.stage2.1.blocks.1.1',
'model.24': 'backbone.stage2.1.final_conv',
# stage3
# MaxPoolBlock reduce_channel_2x
'model.26': 'backbone.stage3.0.maxpool_branches.1',
'model.27': 'backbone.stage3.0.stride_conv_branches.0',
'model.28': 'backbone.stage3.0.stride_conv_branches.1',
# ELANBlock expand_channel_2x
'model.30': 'backbone.stage3.1.short_conv',
'model.31': 'backbone.stage3.1.main_conv',
'model.32': 'backbone.stage3.1.blocks.0.0',
'model.33': 'backbone.stage3.1.blocks.0.1',
'model.34': 'backbone.stage3.1.blocks.1.0',
'model.35': 'backbone.stage3.1.blocks.1.1',
'model.37': 'backbone.stage3.1.final_conv',
# stage4
# MaxPoolBlock reduce_channel_2x
'model.39': 'backbone.stage4.0.maxpool_branches.1',
'model.40': 'backbone.stage4.0.stride_conv_branches.0',
'model.41': 'backbone.stage4.0.stride_conv_branches.1',
# ELANBlock no_change_channel
'model.43': 'backbone.stage4.1.short_conv',
'model.44': 'backbone.stage4.1.main_conv',
'model.45': 'backbone.stage4.1.blocks.0.0',
'model.46': 'backbone.stage4.1.blocks.0.1',
'model.47': 'backbone.stage4.1.blocks.1.0',
'model.48': 'backbone.stage4.1.blocks.1.1',
'model.50': 'backbone.stage4.1.final_conv',
# neck SPPCSPBlock
'model.51.cv1': 'neck.reduce_layers.2.main_layers.0',
'model.51.cv3': 'neck.reduce_layers.2.main_layers.1',
'model.51.cv4': 'neck.reduce_layers.2.main_layers.2',
'model.51.cv5': 'neck.reduce_layers.2.fuse_layers.0',
'model.51.cv6': 'neck.reduce_layers.2.fuse_layers.1',
'model.51.cv2': 'neck.reduce_layers.2.short_layers',
'model.51.cv7': 'neck.reduce_layers.2.final_conv',
# neck
'model.52': 'neck.upsample_layers.0.0',
'model.54': 'neck.reduce_layers.1',
# neck ELANBlock reduce_channel_2x
'model.56': 'neck.top_down_layers.0.short_conv',
'model.57': 'neck.top_down_layers.0.main_conv',
'model.58': 'neck.top_down_layers.0.blocks.0',
'model.59': 'neck.top_down_layers.0.blocks.1',
'model.60': 'neck.top_down_layers.0.blocks.2',
'model.61': 'neck.top_down_layers.0.blocks.3',
'model.63': 'neck.top_down_layers.0.final_conv',
'model.64': 'neck.upsample_layers.1.0',
'model.66': 'neck.reduce_layers.0',
# neck ELANBlock reduce_channel_2x
'model.68': 'neck.top_down_layers.1.short_conv',
'model.69': 'neck.top_down_layers.1.main_conv',
'model.70': 'neck.top_down_layers.1.blocks.0',
'model.71': 'neck.top_down_layers.1.blocks.1',
'model.72': 'neck.top_down_layers.1.blocks.2',
'model.73': 'neck.top_down_layers.1.blocks.3',
'model.75': 'neck.top_down_layers.1.final_conv',
# neck MaxPoolBlock no_change_channel
'model.77': 'neck.downsample_layers.0.maxpool_branches.1',
'model.78': 'neck.downsample_layers.0.stride_conv_branches.0',
'model.79': 'neck.downsample_layers.0.stride_conv_branches.1',
# neck ELANBlock reduce_channel_2x
'model.81': 'neck.bottom_up_layers.0.short_conv',
'model.82': 'neck.bottom_up_layers.0.main_conv',
'model.83': 'neck.bottom_up_layers.0.blocks.0',
'model.84': 'neck.bottom_up_layers.0.blocks.1',
'model.85': 'neck.bottom_up_layers.0.blocks.2',
'model.86': 'neck.bottom_up_layers.0.blocks.3',
'model.88': 'neck.bottom_up_layers.0.final_conv',
# neck MaxPoolBlock no_change_channel
'model.90': 'neck.downsample_layers.1.maxpool_branches.1',
'model.91': 'neck.downsample_layers.1.stride_conv_branches.0',
'model.92': 'neck.downsample_layers.1.stride_conv_branches.1',
# neck ELANBlock reduce_channel_2x
'model.94': 'neck.bottom_up_layers.1.short_conv',
'model.95': 'neck.bottom_up_layers.1.main_conv',
'model.96': 'neck.bottom_up_layers.1.blocks.0',
'model.97': 'neck.bottom_up_layers.1.blocks.1',
'model.98': 'neck.bottom_up_layers.1.blocks.2',
'model.99': 'neck.bottom_up_layers.1.blocks.3',
'model.101': 'neck.bottom_up_layers.1.final_conv',
# RepVGGBlock
'model.102.rbr_dense.0': 'neck.out_layers.0.rbr_dense.conv',
'model.102.rbr_dense.1': 'neck.out_layers.0.rbr_dense.bn',
'model.102.rbr_1x1.0': 'neck.out_layers.0.rbr_1x1.conv',
'model.102.rbr_1x1.1': 'neck.out_layers.0.rbr_1x1.bn',
'model.103.rbr_dense.0': 'neck.out_layers.1.rbr_dense.conv',
'model.103.rbr_dense.1': 'neck.out_layers.1.rbr_dense.bn',
'model.103.rbr_1x1.0': 'neck.out_layers.1.rbr_1x1.conv',
'model.103.rbr_1x1.1': 'neck.out_layers.1.rbr_1x1.bn',
'model.104.rbr_dense.0': 'neck.out_layers.2.rbr_dense.conv',
'model.104.rbr_dense.1': 'neck.out_layers.2.rbr_dense.bn',
'model.104.rbr_1x1.0': 'neck.out_layers.2.rbr_1x1.conv',
'model.104.rbr_1x1.1': 'neck.out_layers.2.rbr_1x1.bn',
# head
'model.105.m': 'bbox_head.head_module.convs_pred'
}
def convert(src, dst):
"""Convert keys in detectron pretrained YOLOv7 models to mmyolo style."""
try:
yolov7_model = torch.load(src)['model'].float()
blobs = yolov7_model.state_dict()
except ModuleNotFoundError:
raise RuntimeError(
'This script must be placed under the WongKinYiu/yolov7 repo,'
' because loading the official pretrained model need'
' `model.py` to build model.')
state_dict = OrderedDict()
for key, weight in blobs.items():
if key.find('anchors') >= 0 or key.find('anchor_grid') >= 0:
continue
num, module = key.split('.')[1:3]
if int(num) < 102 and int(num) != 51:
prefix = f'model.{num}'
new_key = key.replace(prefix, convert_dict[prefix])
state_dict[new_key] = weight
print(f'Convert {key} to {new_key}')
elif int(num) < 105 and int(num) != 51:
strs_key = key.split('.')[:4]
new_key = key.replace('.'.join(strs_key),
convert_dict['.'.join(strs_key)])
state_dict[new_key] = weight
print(f'Convert {key} to {new_key}')
else:
strs_key = key.split('.')[:3]
new_key = key.replace('.'.join(strs_key),
convert_dict['.'.join(strs_key)])
state_dict[new_key] = weight
print(f'Convert {key} to {new_key}')
# save checkpoint
checkpoint = dict()
checkpoint['state_dict'] = state_dict
torch.save(checkpoint, dst)
# Note: This script must be placed under the yolov7 repo to run.
def main():
parser = argparse.ArgumentParser(description='Convert model keys')
parser.add_argument(
'--src', default='yolov7.pt', help='src yolov7 model path')
parser.add_argument('--dst', default='mm_yolov7l.pt', help='save path')
args = parser.parse_args()
convert(args.src, args.dst)
if __name__ == '__main__':
main()