mmyolo/configs/rtmdet
Xiaolin Wang 71e5c793e5 [Doc] Fix typo (#270)
* fix typo

* fix ci
2022-11-10 11:12:31 +08:00
..
cspnext_imagenet_pretrain [Feature] Support RTMDet (#85) 2022-09-29 19:09:56 +08:00
README.md [Doc] Fix typo (#270) 2022-11-10 11:12:31 +08:00
metafile.yml [Fix] Update metafile for RTMDet (#188) 2022-11-03 19:03:06 +08:00
rtmdet_l_syncbn_8xb32-300e_coco.py [Feature] Support P6 YOLOv5 (#168) 2022-11-03 19:03:06 +08:00
rtmdet_m_syncbn_8xb32-300e_coco.py [Feature] Support RTMDet (#85) 2022-09-29 19:09:56 +08:00
rtmdet_s_syncbn_8xb32-300e_coco.py Add changelog of v0.1.2 (#226) 2022-11-03 19:03:06 +08:00
rtmdet_tiny_syncbn_8xb32-300e_coco.py [Feature] Support RTMDet (#85) 2022-09-29 19:09:56 +08:00
rtmdet_x_syncbn_8xb32-300e_coco.py [Feature] Support RTMDet (#85) 2022-09-29 19:09:56 +08:00

README.md

RTMDet

Abstract

Our tech-report will be released soon.

Results and Models

Backbone size SyncBN box AP Params(M) FLOPS(G) TRT-FP16-Latency(ms) Config Download
RTMDet-tiny 640 Yes 40.9 4.8 8.1 0.98 config model | log
RTMDet-s 640 Yes 44.5 8.89 14.8 1.22 config model | log
RTMDet-m 640 Yes 49.1 24.71 39.27 1.62 config model | log
RTMDet-l 640 Yes 51.3 52.3 80.23 2.44 config model | log
RTMDet-x 640 Yes 52.6 94.86 141.67 3.10 config model | log

Note:

  1. The inference speed is measured on an NVIDIA 3090 GPU with TensorRT 8.4.3, cuDNN 8.2.0, FP16, batch size=1, and without NMS.
  2. We still directly use the weights trained by mmdet currently. A re-trained model will be released later.