mmyolo/configs/yolov5
Range King 98a0f6b9c9
[Docs] RE: Fix typos and add citations (#45)
* update logo (#37)

* [Docs] Update images with new logo (#38)

* Update model_design.md

Update logo

* Revert "Update model_design.md"

This reverts commit 207f529522.

* Update yolov5_description.md

Update logo

* Update model_design.md

Update logo

* Update model_design.md

Update logo

* Update README.md

Update logo

* Update README_zh-CN.md

Update logo

* Add GIF Link (#40)

* Update README.md

* Update README_zh-CN.md

* Update README.md

* Update README_zh-CN.md

* Fix typos in config.md

* Add citation of yolov6

* Add citation of yolov5

* Fix links in README.md

* Fix typos in data_flow.md in en

Co-authored-by: wanghonglie <wanghonglie@zju.edu.cn>
Co-authored-by: MingJian.L <45811724+matrixgame2018@users.noreply.github.com>
2022-09-20 10:29:01 +08:00
..
README.md [Docs] RE: Fix typos and add citations (#45) 2022-09-20 10:29:01 +08:00
metafile.yml upload yolox_tiny and yolov5_n model 2022-09-20 10:07:57 +08:00
yolov5_l-v61_syncbn_fast_8xb16-300e_coco.py init commit 2022-09-18 10:11:55 +08:00
yolov5_m-v61_syncbn_fast_8xb16-300e_coco.py init commit 2022-09-18 10:11:55 +08:00
yolov5_n-v61_syncbn_fast_8xb16-300e_coco.py init commit 2022-09-18 10:11:55 +08:00
yolov5_s-v61_syncbn-detect_8xb16-300e_coco.py init commit 2022-09-18 10:11:55 +08:00
yolov5_s-v61_syncbn_8xb16-300e_coco.py [Fix] replace pre to per (#24) 2022-09-18 15:40:29 +08:00
yolov5_s-v61_syncbn_fast_1xb4-300e_balloon.py [Fix] fix the num_workers setting (#25) 2022-09-18 15:38:36 +08:00
yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py init commit 2022-09-18 10:11:55 +08:00
yolov5_x-v61_syncbn_fast_8xb16-300e_coco.py init commit 2022-09-18 10:11:55 +08:00

README.md

YOLOv5

Abstract

YOLOv5 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.

Results and models

COCO

Backbone size SyncBN AMP Mem (GB) box AP Config Download
YOLOv5-n 640 Yes Yes 1.5 28.0 config model | log
YOLOv5-s 640 Yes Yes 2.7 37.7 config model | log
YOLOv5-m 640 Yes Yes 5.0 45.3 config model | log
YOLOv5-l 640 Yes Yes 8.1 48.8 config model | log

Note:

  1. fast means that YOLOv5DetDataPreprocessor and yolov5_collate are used for data preprocessing, which is faster for training, but less flexible for multitasking. Recommended to use fast version config if you only care about object detection.
  2. SyncBN means use SyncBN, AMP indicates training with mixed precision.
  3. We use 8x A100 for training, and the single-GPU batch size is 16. This is different from the official code.
  4. The performance is unstable and may fluctuate by about 0.4 mAP.

Citation

@software{glenn_jocher_2022_7002879,
  author       = {Glenn Jocher and
                  Ayush Chaurasia and
                  Alex Stoken and
                  Jirka Borovec and
                  NanoCode012 and
                  Yonghye Kwon and
                  TaoXie and
                  Kalen Michael and
                  Jiacong Fang and
                  imyhxy and
                  Lorna and
                  Colin Wong and
                  曾逸夫(Zeng Yifu) and
                  Abhiram V and
                  Diego Montes and
                  Zhiqiang Wang and
                  Cristi Fati and
                  Jebastin Nadar and
                  Laughing and
                  UnglvKitDe and
                  tkianai and
                  yxNONG and
                  Piotr Skalski and
                  Adam Hogan and
                  Max Strobel and
                  Mrinal Jain and
                  Lorenzo Mammana and
                  xylieong},
  title        = {{ultralytics/yolov5: v6.2 - YOLOv5 Classification
                   Models, Apple M1, Reproducibility, ClearML and
                   Deci.ai integrations}},
  month        = aug,
  year         = 2022,
  publisher    = {Zenodo},
  version      = {v6.2},
  doi          = {10.5281/zenodo.7002879},
  url          = {https://doi.org/10.5281/zenodo.7002879}
}