mmyolo/configs/yolox/yolox_s_8xb8-300e_coco.py

279 lines
7.9 KiB
Python

_base_ = '../_base_/default_runtime.py'
data_root = 'data/coco/'
dataset_type = 'YOLOv5CocoDataset'
img_scale = (640, 640) # height, width
deepen_factor = 0.33
widen_factor = 0.5
save_epoch_intervals = 10
train_batch_size_per_gpu = 8
train_num_workers = 8
val_batch_size_per_gpu = 1
val_num_workers = 2
max_epochs = 300
num_last_epochs = 15
# model settings
model = dict(
type='YOLODetector',
init_cfg=dict(
type='Kaiming',
layer='Conv2d',
a=2.23606797749979, # math.sqrt(5)
distribution='uniform',
mode='fan_in',
nonlinearity='leaky_relu'),
# TODO: Waiting for mmengine support
use_syncbn=False,
data_preprocessor=dict(
type='mmdet.DetDataPreprocessor',
pad_size_divisor=32,
batch_augments=[
dict(
type='mmdet.BatchSyncRandomResize',
random_size_range=(480, 800),
size_divisor=32,
interval=10)
]),
backbone=dict(
type='YOLOXCSPDarknet',
deepen_factor=deepen_factor,
widen_factor=widen_factor,
out_indices=(2, 3, 4),
spp_kernal_sizes=(5, 9, 13),
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
act_cfg=dict(type='SiLU', inplace=True),
),
neck=dict(
type='YOLOXPAFPN',
deepen_factor=deepen_factor,
widen_factor=widen_factor,
in_channels=[256, 512, 1024],
out_channels=256,
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
act_cfg=dict(type='SiLU', inplace=True)),
bbox_head=dict(
type='YOLOXHead',
head_module=dict(
type='YOLOXHeadModule',
num_classes=80,
in_channels=256,
feat_channels=256,
widen_factor=widen_factor,
stacked_convs=2,
featmap_strides=(8, 16, 32),
use_depthwise=False,
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
act_cfg=dict(type='SiLU', inplace=True),
),
loss_cls=dict(
type='mmdet.CrossEntropyLoss',
use_sigmoid=True,
reduction='sum',
loss_weight=1.0),
loss_bbox=dict(
type='mmdet.IoULoss',
mode='square',
eps=1e-16,
reduction='sum',
loss_weight=5.0),
loss_obj=dict(
type='mmdet.CrossEntropyLoss',
use_sigmoid=True,
reduction='sum',
loss_weight=1.0),
loss_bbox_aux=dict(
type='mmdet.L1Loss', reduction='sum', loss_weight=1.0)),
train_cfg=dict(
assigner=dict(
type='mmdet.SimOTAAssigner',
center_radius=2.5,
iou_calculator=dict(type='mmdet.BboxOverlaps2D'))),
test_cfg=dict(
yolox_style=True, # better
multi_label=True, # 40.5 -> 40.7
score_thr=0.001,
max_per_img=300,
nms=dict(type='nms', iou_threshold=0.65)))
pre_transform = [
dict(
type='LoadImageFromFile',
file_client_args={{_base_.file_client_args}}),
dict(type='LoadAnnotations', with_bbox=True)
]
train_pipeline_stage1 = [
*pre_transform,
dict(
type='Mosaic',
img_scale=img_scale,
pad_val=114.0,
pre_transform=pre_transform),
dict(
type='mmdet.RandomAffine',
scaling_ratio_range=(0.1, 2),
border=(-img_scale[0] // 2, -img_scale[1] // 2)),
dict(
type='YOLOXMixUp',
img_scale=img_scale,
ratio_range=(0.8, 1.6),
pad_val=114.0,
pre_transform=pre_transform),
dict(type='mmdet.YOLOXHSVRandomAug'),
dict(type='mmdet.RandomFlip', prob=0.5),
dict(
type='mmdet.FilterAnnotations',
min_gt_bbox_wh=(1, 1),
keep_empty=False),
dict(
type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
'flip_direction'))
]
train_pipeline_stage2 = [
*pre_transform,
dict(type='mmdet.Resize', scale=img_scale, keep_ratio=True),
dict(
type='mmdet.Pad',
pad_to_square=True,
# If the image is three-channel, the pad value needs
# to be set separately for each channel.
pad_val=dict(img=(114.0, 114.0, 114.0))),
dict(type='mmdet.YOLOXHSVRandomAug'),
dict(type='mmdet.RandomFlip', prob=0.5),
dict(
type='mmdet.FilterAnnotations',
min_gt_bbox_wh=(1, 1),
keep_empty=False),
dict(type='mmdet.PackDetInputs')
]
train_dataloader = dict(
batch_size=train_batch_size_per_gpu,
num_workers=train_num_workers,
persistent_workers=True,
pin_memory=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/instances_train2017.json',
data_prefix=dict(img='train2017/'),
filter_cfg=dict(filter_empty_gt=False, min_size=32),
pipeline=train_pipeline_stage1))
test_pipeline = [
dict(
type='LoadImageFromFile',
file_client_args={{_base_.file_client_args}}),
dict(type='mmdet.Resize', scale=img_scale, keep_ratio=True),
dict(
type='mmdet.Pad',
pad_to_square=True,
pad_val=dict(img=(114.0, 114.0, 114.0))),
dict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'),
dict(
type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor'))
]
val_dataloader = dict(
batch_size=val_batch_size_per_gpu,
num_workers=val_num_workers,
persistent_workers=True,
pin_memory=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/instances_val2017.json',
data_prefix=dict(img='val2017/'),
test_mode=True,
pipeline=test_pipeline))
test_dataloader = val_dataloader
# Reduce evaluation time
val_evaluator = dict(
type='mmdet.CocoMetric',
proposal_nums=(100, 1, 10),
ann_file=data_root + 'annotations/instances_val2017.json',
metric='bbox')
test_evaluator = val_evaluator
# optimizer
# default 8 gpu
base_lr = 0.01
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(
type='SGD', lr=base_lr, momentum=0.9, weight_decay=5e-4,
nesterov=True),
paramwise_cfg=dict(norm_decay_mult=0., bias_decay_mult=0.))
# learning rate
param_scheduler = [
dict(
# use quadratic formula to warm up 5 epochs
# and lr is updated by iteration
# TODO: fix default scope in get function
type='mmdet.QuadraticWarmupLR',
by_epoch=True,
begin=0,
end=5,
convert_to_iter_based=True),
dict(
# use cosine lr from 5 to 285 epoch
type='CosineAnnealingLR',
eta_min=base_lr * 0.05,
begin=5,
T_max=max_epochs - num_last_epochs,
end=max_epochs - num_last_epochs,
by_epoch=True,
convert_to_iter_based=True),
dict(
# use fixed lr during last 15 epochs
type='ConstantLR',
by_epoch=True,
factor=1,
begin=max_epochs - num_last_epochs,
end=max_epochs,
)
]
default_hooks = dict(
checkpoint=dict(
type='CheckpointHook', interval=1, max_keep_ckpts=3, save_best='auto'))
custom_hooks = [
dict(
type='YOLOXModeSwitchHook',
num_last_epochs=num_last_epochs,
new_train_pipeline=train_pipeline_stage2,
priority=48),
dict(type='mmdet.SyncNormHook', priority=48),
dict(
type='EMAHook',
ema_type='ExpMomentumEMA',
momentum=0.0001,
update_buffers=True,
priority=49)
]
train_cfg = dict(
type='EpochBasedTrainLoop',
max_epochs=max_epochs,
val_interval=save_epoch_intervals,
dynamic_intervals=[(max_epochs - num_last_epochs, 1)])
auto_scale_lr = dict(base_batch_size=64)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')